Files
Scraperr/api/backend/job.py
2024-07-21 21:30:26 -05:00

111 lines
2.9 KiB
Python

# STL
import logging
from typing import Any
from pymongo import DESCENDING
# LOCAL
from api.backend.database import get_job_collection
LOG = logging.getLogger(__name__)
async def insert(item: dict[str, Any]) -> None:
collection = get_job_collection()
i = await collection.insert_one(item)
LOG.info(f"Inserted item: {i}")
async def get_queued_job():
collection = get_job_collection()
return await collection.find_one(
{"status": "Queued"}, sort=[("created_at", DESCENDING)]
)
async def query(filter: dict[str, Any]) -> list[dict[str, Any]]:
collection = get_job_collection()
cursor = collection.find(filter)
results: list[dict[str, Any]] = []
async for document in cursor:
del document["_id"]
results.append(document)
return results
async def update_job(ids: list[str], field: str, value: Any):
collection = get_job_collection()
for id in ids:
_ = await collection.update_one(
{"id": id},
{"$set": {field: value}},
)
async def delete_jobs(jobs: list[str]):
collection = get_job_collection()
result = await collection.delete_many({"id": {"$in": jobs}})
LOG.info(f"RESULT: {result.deleted_count} documents deleted")
return True if result.deleted_count > 0 else False
async def average_elements_per_link(user: str):
collection = get_job_collection()
pipeline = [
{"$match": {"status": "Completed", "user": user}},
{
"$project": {
"date": {
"$dateToString": {"format": "%Y-%m-%d", "date": "$time_created"}
},
"num_elements": {"$size": "$elements"},
}
},
{
"$group": {
"_id": "$date",
"average_elements": {"$avg": "$num_elements"},
"count": {"$sum": 1},
}
},
{"$sort": {"_id": 1}},
]
cursor = collection.aggregate(pipeline)
results: list[dict[str, Any]] = []
async for document in cursor:
results.append(
{
"date": document["_id"],
"average_elements": document["average_elements"],
"count": document["count"],
}
)
return results
async def get_jobs_per_day(user: str):
collection = get_job_collection()
pipeline = [
{"$match": {"status": "Completed", "user": user}},
{
"$project": {
"date": {
"$dateToString": {"format": "%Y-%m-%d", "date": "$time_created"}
}
}
},
{"$group": {"_id": "$date", "job_count": {"$sum": 1}}},
{"$sort": {"_id": 1}},
]
cursor = collection.aggregate(pipeline)
results: list[dict[str, Any]] = []
async for document in cursor:
results.append({"date": document["_id"], "job_count": document["job_count"]})
return results