Files
beszel/agent/smart.go
henrygd 365d291393 improve smart device detection (#1345)
also fix virtual device filtering
2025-10-29 01:16:58 -04:00

894 lines
28 KiB
Go

package agent
import (
"context"
"encoding/json"
"errors"
"fmt"
"os/exec"
"strconv"
"strings"
"sync"
"time"
"github.com/henrygd/beszel/internal/entities/smart"
"golang.org/x/exp/slog"
)
// SmartManager manages data collection for SMART devices
type SmartManager struct {
sync.Mutex
SmartDataMap map[string]*smart.SmartData
SmartDevices []*DeviceInfo
refreshMutex sync.Mutex
lastScanTime time.Time
}
type scanOutput struct {
Devices []struct {
Name string `json:"name"`
Type string `json:"type"`
InfoName string `json:"info_name"`
Protocol string `json:"protocol"`
} `json:"devices"`
}
type DeviceInfo struct {
Name string `json:"name"`
Type string `json:"type"`
InfoName string `json:"info_name"`
Protocol string `json:"protocol"`
// typeVerified reports whether we have already parsed SMART data for this device
// with the stored parserType. When true we can skip re-running the detection logic.
typeVerified bool
// parserType holds the parser type (nvme, sat, scsi) that last succeeded.
parserType string
}
var errNoValidSmartData = fmt.Errorf("no valid SMART data found") // Error for missing data
// Refresh updates SMART data for all known devices
func (sm *SmartManager) Refresh(forceScan bool) error {
sm.refreshMutex.Lock()
defer sm.refreshMutex.Unlock()
scanErr := sm.ScanDevices(false)
if scanErr != nil {
slog.Debug("smartctl scan failed", "err", scanErr)
}
devices := sm.devicesSnapshot()
var collectErr error
for _, deviceInfo := range devices {
if deviceInfo == nil {
continue
}
if err := sm.CollectSmart(deviceInfo); err != nil {
slog.Debug("smartctl collect failed", "device", deviceInfo.Name, "err", err)
collectErr = err
}
}
return sm.resolveRefreshError(scanErr, collectErr)
}
// devicesSnapshot returns a copy of the current device slice to avoid iterating
// while holding the primary mutex for longer than necessary.
func (sm *SmartManager) devicesSnapshot() []*DeviceInfo {
sm.Lock()
defer sm.Unlock()
devices := make([]*DeviceInfo, len(sm.SmartDevices))
copy(devices, sm.SmartDevices)
return devices
}
// hasSmartData reports whether any SMART data has been collected.
// func (sm *SmartManager) hasSmartData() bool {
// sm.Lock()
// defer sm.Unlock()
// return len(sm.SmartDataMap) > 0
// }
// resolveRefreshError determines the proper error to return after a refresh.
func (sm *SmartManager) resolveRefreshError(scanErr, collectErr error) error {
sm.Lock()
noDevices := len(sm.SmartDevices) == 0
noData := len(sm.SmartDataMap) == 0
sm.Unlock()
if noDevices {
if scanErr != nil {
return scanErr
}
}
if !noData {
return nil
}
if collectErr != nil {
return collectErr
}
if scanErr != nil {
return scanErr
}
return errNoValidSmartData
}
// GetCurrentData returns the current SMART data
func (sm *SmartManager) GetCurrentData() map[string]smart.SmartData {
sm.Lock()
defer sm.Unlock()
result := make(map[string]smart.SmartData, len(sm.SmartDataMap))
for key, value := range sm.SmartDataMap {
if value != nil {
result[key] = *value
}
}
return result
}
// ScanDevices scans for SMART devices
// Scan devices using `smartctl --scan -j`
// If scan fails, return error
// If scan succeeds, parse the output and update the SmartDevices slice
func (sm *SmartManager) ScanDevices(force bool) error {
if !force && time.Since(sm.lastScanTime) < 30*time.Minute {
return nil
}
sm.lastScanTime = time.Now()
currentDevices := sm.devicesSnapshot()
var configuredDevices []*DeviceInfo
if configuredRaw, ok := GetEnv("SMART_DEVICES"); ok {
slog.Info("SMART_DEVICES", "value", configuredRaw)
config := strings.TrimSpace(configuredRaw)
if config == "" {
return errNoValidSmartData
}
parsedDevices, err := sm.parseConfiguredDevices(config)
if err != nil {
return err
}
configuredDevices = parsedDevices
}
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
cmd := exec.CommandContext(ctx, "smartctl", "--scan", "-j")
output, err := cmd.Output()
var (
scanErr error
scannedDevices []*DeviceInfo
hasValidScan bool
)
if err != nil {
scanErr = err
} else {
scannedDevices, hasValidScan = sm.parseScan(output)
if !hasValidScan {
scanErr = errNoValidSmartData
}
}
finalDevices := mergeDeviceLists(currentDevices, scannedDevices, configuredDevices)
sm.updateSmartDevices(finalDevices)
if len(finalDevices) == 0 {
if scanErr != nil {
slog.Debug("smartctl scan failed", "err", scanErr)
return scanErr
}
return errNoValidSmartData
}
return nil
}
func (sm *SmartManager) parseConfiguredDevices(config string) ([]*DeviceInfo, error) {
entries := strings.Split(config, ",")
devices := make([]*DeviceInfo, 0, len(entries))
for _, entry := range entries {
entry = strings.TrimSpace(entry)
if entry == "" {
continue
}
parts := strings.SplitN(entry, ":", 2)
name := strings.TrimSpace(parts[0])
if name == "" {
return nil, fmt.Errorf("invalid SMART_DEVICES entry %q", entry)
}
devType := ""
if len(parts) == 2 {
devType = strings.ToLower(strings.TrimSpace(parts[1]))
}
devices = append(devices, &DeviceInfo{
Name: name,
Type: devType,
})
}
if len(devices) == 0 {
return nil, errNoValidSmartData
}
return devices, nil
}
// detectSmartOutputType inspects sections that are unique to each smartctl
// JSON schema (NVMe, ATA/SATA, SCSI) to determine which parser should be used
// when the reported device type is ambiguous or missing.
func detectSmartOutputType(output []byte) string {
var hints struct {
AtaSmartAttributes json.RawMessage `json:"ata_smart_attributes"`
NVMeSmartHealthInformationLog json.RawMessage `json:"nvme_smart_health_information_log"`
ScsiErrorCounterLog json.RawMessage `json:"scsi_error_counter_log"`
}
if err := json.Unmarshal(output, &hints); err != nil {
return ""
}
switch {
case hasJSONValue(hints.NVMeSmartHealthInformationLog):
return "nvme"
case hasJSONValue(hints.AtaSmartAttributes):
return "sat"
case hasJSONValue(hints.ScsiErrorCounterLog):
return "scsi"
default:
return "sat"
}
}
// hasJSONValue reports whether a JSON payload contains a concrete value. The
// smartctl output often emits "null" for sections that do not apply, so we
// only treat non-null content as a hint.
func hasJSONValue(raw json.RawMessage) bool {
if len(raw) == 0 {
return false
}
trimmed := strings.TrimSpace(string(raw))
return trimmed != "" && trimmed != "null"
}
func normalizeParserType(value string) string {
switch strings.ToLower(strings.TrimSpace(value)) {
case "nvme", "sntasmedia", "sntrealtek":
return "nvme"
case "sat", "ata":
return "sat"
case "scsi":
return "scsi"
default:
return strings.ToLower(strings.TrimSpace(value))
}
}
// parseSmartOutput attempts each SMART parser, optionally detecting the type when
// it is not provided, and updates the device info when a parser succeeds.
func (sm *SmartManager) parseSmartOutput(deviceInfo *DeviceInfo, output []byte) bool {
parsers := []struct {
Type string
Parse func([]byte) (bool, int)
}{
{Type: "nvme", Parse: sm.parseSmartForNvme},
{Type: "sat", Parse: sm.parseSmartForSata},
{Type: "scsi", Parse: sm.parseSmartForScsi},
}
deviceType := normalizeParserType(deviceInfo.parserType)
if deviceType == "" {
deviceType = normalizeParserType(deviceInfo.Type)
}
if deviceInfo.parserType == "" {
switch deviceType {
case "nvme", "sat", "scsi":
deviceInfo.parserType = deviceType
}
}
// Only run the type detection when we do not yet know which parser works
// or the previous attempt failed.
needsDetection := deviceType == "" || !deviceInfo.typeVerified
if needsDetection {
structureType := detectSmartOutputType(output)
if deviceType != structureType {
deviceType = structureType
deviceInfo.parserType = structureType
deviceInfo.typeVerified = false
}
if deviceInfo.Type == "" || strings.EqualFold(deviceInfo.Type, structureType) {
deviceInfo.Type = structureType
}
}
// Try the most likely parser first, but keep the remaining parsers in reserve
// so an incorrect hint never leaves the device unparsed.
selectedParsers := make([]struct {
Type string
Parse func([]byte) (bool, int)
}, 0, len(parsers))
if deviceType != "" {
for _, parser := range parsers {
if parser.Type == deviceType {
selectedParsers = append(selectedParsers, parser)
break
}
}
}
for _, parser := range parsers {
alreadySelected := false
for _, selected := range selectedParsers {
if selected.Type == parser.Type {
alreadySelected = true
break
}
}
if alreadySelected {
continue
}
selectedParsers = append(selectedParsers, parser)
}
// Try the selected parsers in order until we find one that succeeds.
for _, parser := range selectedParsers {
hasData, _ := parser.Parse(output)
if hasData {
deviceInfo.parserType = parser.Type
if deviceInfo.Type == "" || strings.EqualFold(deviceInfo.Type, parser.Type) {
deviceInfo.Type = parser.Type
}
// Remember that this parser is valid so future refreshes can bypass
// detection entirely.
deviceInfo.typeVerified = true
return true
}
slog.Debug("parser failed", "device", deviceInfo.Name, "parser", parser.Type)
}
// Leave verification false so the next pass will attempt detection again.
deviceInfo.typeVerified = false
slog.Debug("parsing failed", "device", deviceInfo.Name)
return false
}
// CollectSmart collects SMART data for a device
// Collect data using `smartctl -d <type> -aj /dev/<device>` when device type is known
// Always attempts to parse output even if command fails, as some data may still be available
// If collect fails, return error
// If collect succeeds, parse the output and update the SmartDataMap
// Uses -n standby to avoid waking up sleeping disks, but bypasses standby mode
// for initial data collection when no cached data exists
func (sm *SmartManager) CollectSmart(deviceInfo *DeviceInfo) error {
// slog.Info("collecting SMART data", "device", deviceInfo.Name, "type", deviceInfo.Type, "has_existing_data", sm.hasDataForDevice(deviceInfo.Name))
// Check if we have any existing data for this device
hasExistingData := sm.hasDataForDevice(deviceInfo.Name)
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second)
defer cancel()
// Try with -n standby first if we have existing data
args := sm.smartctlArgs(deviceInfo, true)
cmd := exec.CommandContext(ctx, "smartctl", args...)
output, err := cmd.CombinedOutput()
// Check if device is in standby (exit status 2)
if exitErr, ok := err.(*exec.ExitError); ok && exitErr.ExitCode() == 2 {
if hasExistingData {
// Device is in standby and we have cached data, keep using cache
return nil
}
// No cached data, need to collect initial data by bypassing standby
ctx2, cancel2 := context.WithTimeout(context.Background(), 2*time.Second)
defer cancel2()
args = sm.smartctlArgs(deviceInfo, false)
cmd = exec.CommandContext(ctx2, "smartctl", args...)
output, err = cmd.CombinedOutput()
}
hasValidData := sm.parseSmartOutput(deviceInfo, output)
if !hasValidData {
if err != nil {
slog.Debug("smartctl failed", "device", deviceInfo.Name, "err", err)
return err
}
slog.Debug("no valid SMART data found", "device", deviceInfo.Name)
return errNoValidSmartData
}
return nil
}
// smartctlArgs returns the arguments for the smartctl command
// based on the device type and whether to include standby mode
func (sm *SmartManager) smartctlArgs(deviceInfo *DeviceInfo, includeStandby bool) []string {
args := make([]string, 0, 7)
if deviceInfo != nil {
deviceType := strings.ToLower(deviceInfo.Type)
// types sometimes misidentified in scan; see github.com/henrygd/beszel/issues/1345
if deviceType != "" && deviceType != "scsi" && deviceType != "ata" {
args = append(args, "-d", deviceInfo.Type)
}
}
args = append(args, "-aj")
if includeStandby {
args = append(args, "-n", "standby")
}
if deviceInfo != nil {
args = append(args, deviceInfo.Name)
}
return args
}
// hasDataForDevice checks if we have cached SMART data for a specific device
func (sm *SmartManager) hasDataForDevice(deviceName string) bool {
sm.Lock()
defer sm.Unlock()
// Check if any cached data has this device name
for _, data := range sm.SmartDataMap {
if data != nil && data.DiskName == deviceName {
return true
}
}
return false
}
// parseScan parses the output of smartctl --scan -j and returns the discovered devices.
func (sm *SmartManager) parseScan(output []byte) ([]*DeviceInfo, bool) {
scan := &scanOutput{}
if err := json.Unmarshal(output, scan); err != nil {
return nil, false
}
if len(scan.Devices) == 0 {
slog.Debug("no devices found in smartctl scan")
return nil, false
}
devices := make([]*DeviceInfo, 0, len(scan.Devices))
for _, device := range scan.Devices {
slog.Debug("smartctl scan", "name", device.Name, "type", device.Type, "protocol", device.Protocol)
devices = append(devices, &DeviceInfo{
Name: device.Name,
Type: device.Type,
InfoName: device.InfoName,
Protocol: device.Protocol,
})
}
return devices, true
}
// mergeDeviceLists combines scanned and configured SMART devices, preferring
// configured SMART_DEVICES when both sources reference the same device.
func mergeDeviceLists(existing, scanned, configured []*DeviceInfo) []*DeviceInfo {
if len(scanned) == 0 && len(configured) == 0 {
return existing
}
// preserveVerifiedType copies the verified type/parser metadata from an existing
// device record so that subsequent scans/config updates never downgrade a
// previously verified device.
preserveVerifiedType := func(target, prev *DeviceInfo) {
if prev == nil || !prev.typeVerified {
return
}
target.Type = prev.Type
target.typeVerified = true
target.parserType = prev.parserType
}
existingIndex := make(map[string]*DeviceInfo, len(existing))
for _, dev := range existing {
if dev == nil || dev.Name == "" {
continue
}
existingIndex[dev.Name] = dev
}
finalDevices := make([]*DeviceInfo, 0, len(scanned)+len(configured))
deviceIndex := make(map[string]*DeviceInfo, len(scanned)+len(configured))
// Start with the newly scanned devices so we always surface fresh metadata,
// but ensure we retain any previously verified parser assignment.
for _, dev := range scanned {
if dev == nil || dev.Name == "" {
continue
}
// Work on a copy so we can safely adjust metadata without mutating the
// input slices that may be reused elsewhere.
copyDev := *dev
if prev := existingIndex[copyDev.Name]; prev != nil {
preserveVerifiedType(&copyDev, prev)
}
finalDevices = append(finalDevices, &copyDev)
deviceIndex[copyDev.Name] = finalDevices[len(finalDevices)-1]
}
// Merge configured devices on top so users can override scan results (except
// for verified type information).
for _, dev := range configured {
if dev == nil || dev.Name == "" {
continue
}
if existingDev, ok := deviceIndex[dev.Name]; ok {
// Only update the type if it has not been verified yet; otherwise we
// keep the existing verified metadata intact.
if dev.Type != "" && !existingDev.typeVerified {
newType := strings.TrimSpace(dev.Type)
existingDev.Type = newType
existingDev.typeVerified = false
existingDev.parserType = normalizeParserType(newType)
}
if dev.InfoName != "" {
existingDev.InfoName = dev.InfoName
}
if dev.Protocol != "" {
existingDev.Protocol = dev.Protocol
}
continue
}
copyDev := *dev
if prev := existingIndex[copyDev.Name]; prev != nil {
preserveVerifiedType(&copyDev, prev)
} else if copyDev.Type != "" {
copyDev.parserType = normalizeParserType(copyDev.Type)
}
finalDevices = append(finalDevices, &copyDev)
deviceIndex[copyDev.Name] = finalDevices[len(finalDevices)-1]
}
return finalDevices
}
// updateSmartDevices replaces the cached device list and prunes SMART data
// entries whose backing device no longer exists.
func (sm *SmartManager) updateSmartDevices(devices []*DeviceInfo) {
sm.Lock()
defer sm.Unlock()
sm.SmartDevices = devices
if len(sm.SmartDataMap) == 0 {
return
}
validNames := make(map[string]struct{}, len(devices))
for _, device := range devices {
if device == nil || device.Name == "" {
continue
}
validNames[device.Name] = struct{}{}
}
for key, data := range sm.SmartDataMap {
if data == nil {
delete(sm.SmartDataMap, key)
continue
}
if _, ok := validNames[data.DiskName]; ok {
continue
}
delete(sm.SmartDataMap, key)
}
}
// isVirtualDevice checks if a device is a virtual disk that should be filtered out
func (sm *SmartManager) isVirtualDevice(data *smart.SmartInfoForSata) bool {
vendorUpper := strings.ToUpper(data.ScsiVendor)
productUpper := strings.ToUpper(data.ScsiProduct)
modelUpper := strings.ToUpper(data.ModelName)
return sm.isVirtualDeviceFromStrings(vendorUpper, productUpper, modelUpper)
}
// isVirtualDeviceNvme checks if an NVMe device is a virtual disk that should be filtered out
func (sm *SmartManager) isVirtualDeviceNvme(data *smart.SmartInfoForNvme) bool {
modelUpper := strings.ToUpper(data.ModelName)
return sm.isVirtualDeviceFromStrings(modelUpper)
}
// isVirtualDeviceScsi checks if a SCSI device is a virtual disk that should be filtered out
func (sm *SmartManager) isVirtualDeviceScsi(data *smart.SmartInfoForScsi) bool {
vendorUpper := strings.ToUpper(data.ScsiVendor)
productUpper := strings.ToUpper(data.ScsiProduct)
modelUpper := strings.ToUpper(data.ScsiModelName)
return sm.isVirtualDeviceFromStrings(vendorUpper, productUpper, modelUpper)
}
// isVirtualDeviceFromStrings checks if any of the provided strings indicate a virtual device
func (sm *SmartManager) isVirtualDeviceFromStrings(fields ...string) bool {
for _, field := range fields {
fieldUpper := strings.ToUpper(field)
switch {
case strings.Contains(fieldUpper, "IET"), // iSCSI Enterprise Target
strings.Contains(fieldUpper, "VIRTUAL"),
strings.Contains(fieldUpper, "QEMU"),
strings.Contains(fieldUpper, "VBOX"),
strings.Contains(fieldUpper, "VMWARE"),
strings.Contains(fieldUpper, "MSFT"): // Microsoft Hyper-V
return true
}
}
return false
}
// parseSmartForSata parses the output of smartctl --all -j for SATA/ATA devices and updates the SmartDataMap
// Returns hasValidData and exitStatus
func (sm *SmartManager) parseSmartForSata(output []byte) (bool, int) {
var data smart.SmartInfoForSata
if err := json.Unmarshal(output, &data); err != nil {
return false, 0
}
if data.SerialNumber == "" {
slog.Debug("no serial number", "device", data.Device.Name)
return false, data.Smartctl.ExitStatus
}
// Skip virtual devices (e.g., Kubernetes PVCs, QEMU, VirtualBox, etc.)
if sm.isVirtualDevice(&data) {
slog.Debug("skipping smart", "device", data.Device.Name, "model", data.ModelName)
return false, data.Smartctl.ExitStatus
}
sm.Lock()
defer sm.Unlock()
keyName := data.SerialNumber
// if device does not exist in SmartDataMap, initialize it
if _, ok := sm.SmartDataMap[keyName]; !ok {
sm.SmartDataMap[keyName] = &smart.SmartData{}
}
// update SmartData
smartData := sm.SmartDataMap[keyName]
// smartData.ModelFamily = data.ModelFamily
smartData.ModelName = data.ModelName
smartData.SerialNumber = data.SerialNumber
smartData.FirmwareVersion = data.FirmwareVersion
smartData.Capacity = data.UserCapacity.Bytes
smartData.Temperature = data.Temperature.Current
smartData.SmartStatus = getSmartStatus(smartData.Temperature, data.SmartStatus.Passed)
smartData.DiskName = data.Device.Name
smartData.DiskType = data.Device.Type
// update SmartAttributes
smartData.Attributes = make([]*smart.SmartAttribute, 0, len(data.AtaSmartAttributes.Table))
for _, attr := range data.AtaSmartAttributes.Table {
smartAttr := &smart.SmartAttribute{
ID: attr.ID,
Name: attr.Name,
Value: attr.Value,
Worst: attr.Worst,
Threshold: attr.Thresh,
RawValue: uint64(attr.Raw.Value),
RawString: attr.Raw.String,
WhenFailed: attr.WhenFailed,
}
smartData.Attributes = append(smartData.Attributes, smartAttr)
}
sm.SmartDataMap[keyName] = smartData
return true, data.Smartctl.ExitStatus
}
func getSmartStatus(temperature uint8, passed bool) string {
if passed {
return "PASSED"
} else if temperature > 0 {
return "FAILED"
} else {
return "UNKNOWN"
}
}
func (sm *SmartManager) parseSmartForScsi(output []byte) (bool, int) {
var data smart.SmartInfoForScsi
if err := json.Unmarshal(output, &data); err != nil {
return false, 0
}
if data.SerialNumber == "" {
slog.Debug("no serial number", "device", data.Device.Name)
return false, data.Smartctl.ExitStatus
}
// Skip virtual devices (e.g., Kubernetes PVCs, QEMU, VirtualBox, etc.)
if sm.isVirtualDeviceScsi(&data) {
slog.Debug("skipping smart", "device", data.Device.Name, "model", data.ScsiModelName)
return false, data.Smartctl.ExitStatus
}
sm.Lock()
defer sm.Unlock()
keyName := data.SerialNumber
if _, ok := sm.SmartDataMap[keyName]; !ok {
sm.SmartDataMap[keyName] = &smart.SmartData{}
}
smartData := sm.SmartDataMap[keyName]
smartData.ModelName = data.ScsiModelName
smartData.SerialNumber = data.SerialNumber
smartData.FirmwareVersion = data.ScsiRevision
smartData.Capacity = data.UserCapacity.Bytes
smartData.Temperature = data.Temperature.Current
smartData.SmartStatus = getSmartStatus(smartData.Temperature, data.SmartStatus.Passed)
smartData.DiskName = data.Device.Name
smartData.DiskType = data.Device.Type
attributes := make([]*smart.SmartAttribute, 0, 10)
attributes = append(attributes, &smart.SmartAttribute{Name: "PowerOnHours", RawValue: data.PowerOnTime.Hours})
attributes = append(attributes, &smart.SmartAttribute{Name: "PowerOnMinutes", RawValue: data.PowerOnTime.Minutes})
attributes = append(attributes, &smart.SmartAttribute{Name: "GrownDefectList", RawValue: data.ScsiGrownDefectList})
attributes = append(attributes, &smart.SmartAttribute{Name: "StartStopCycles", RawValue: data.ScsiStartStopCycleCounter.AccumulatedStartStopCycles})
attributes = append(attributes, &smart.SmartAttribute{Name: "LoadUnloadCycles", RawValue: data.ScsiStartStopCycleCounter.AccumulatedLoadUnloadCycles})
attributes = append(attributes, &smart.SmartAttribute{Name: "StartStopSpecified", RawValue: data.ScsiStartStopCycleCounter.SpecifiedCycleCountOverDeviceLifetime})
attributes = append(attributes, &smart.SmartAttribute{Name: "LoadUnloadSpecified", RawValue: data.ScsiStartStopCycleCounter.SpecifiedLoadUnloadCountOverDeviceLifetime})
readStats := data.ScsiErrorCounterLog.Read
writeStats := data.ScsiErrorCounterLog.Write
verifyStats := data.ScsiErrorCounterLog.Verify
attributes = append(attributes, &smart.SmartAttribute{Name: "ReadTotalErrorsCorrected", RawValue: readStats.TotalErrorsCorrected})
attributes = append(attributes, &smart.SmartAttribute{Name: "ReadTotalUncorrectedErrors", RawValue: readStats.TotalUncorrectedErrors})
attributes = append(attributes, &smart.SmartAttribute{Name: "ReadCorrectionAlgorithmInvocations", RawValue: readStats.CorrectionAlgorithmInvocations})
if val := parseScsiGigabytesProcessed(readStats.GigabytesProcessed); val >= 0 {
attributes = append(attributes, &smart.SmartAttribute{Name: "ReadGigabytesProcessed", RawValue: uint64(val)})
}
attributes = append(attributes, &smart.SmartAttribute{Name: "WriteTotalErrorsCorrected", RawValue: writeStats.TotalErrorsCorrected})
attributes = append(attributes, &smart.SmartAttribute{Name: "WriteTotalUncorrectedErrors", RawValue: writeStats.TotalUncorrectedErrors})
attributes = append(attributes, &smart.SmartAttribute{Name: "WriteCorrectionAlgorithmInvocations", RawValue: writeStats.CorrectionAlgorithmInvocations})
if val := parseScsiGigabytesProcessed(writeStats.GigabytesProcessed); val >= 0 {
attributes = append(attributes, &smart.SmartAttribute{Name: "WriteGigabytesProcessed", RawValue: uint64(val)})
}
attributes = append(attributes, &smart.SmartAttribute{Name: "VerifyTotalErrorsCorrected", RawValue: verifyStats.TotalErrorsCorrected})
attributes = append(attributes, &smart.SmartAttribute{Name: "VerifyTotalUncorrectedErrors", RawValue: verifyStats.TotalUncorrectedErrors})
attributes = append(attributes, &smart.SmartAttribute{Name: "VerifyCorrectionAlgorithmInvocations", RawValue: verifyStats.CorrectionAlgorithmInvocations})
if val := parseScsiGigabytesProcessed(verifyStats.GigabytesProcessed); val >= 0 {
attributes = append(attributes, &smart.SmartAttribute{Name: "VerifyGigabytesProcessed", RawValue: uint64(val)})
}
smartData.Attributes = attributes
sm.SmartDataMap[keyName] = smartData
return true, data.Smartctl.ExitStatus
}
func parseScsiGigabytesProcessed(value string) int64 {
if value == "" {
return -1
}
normalized := strings.ReplaceAll(value, ",", "")
parsed, err := strconv.ParseInt(normalized, 10, 64)
if err != nil {
return -1
}
return parsed
}
// parseSmartForNvme parses the output of smartctl --all -j /dev/nvmeX and updates the SmartDataMap
// Returns hasValidData and exitStatus
func (sm *SmartManager) parseSmartForNvme(output []byte) (bool, int) {
data := &smart.SmartInfoForNvme{}
if err := json.Unmarshal(output, &data); err != nil {
return false, 0
}
if data.SerialNumber == "" {
slog.Debug("no serial number", "device", data.Device.Name)
return false, data.Smartctl.ExitStatus
}
// Skip virtual devices (e.g., Kubernetes PVCs, QEMU, VirtualBox, etc.)
if sm.isVirtualDeviceNvme(data) {
slog.Debug("skipping smart", "device", data.Device.Name, "model", data.ModelName)
return false, data.Smartctl.ExitStatus
}
sm.Lock()
defer sm.Unlock()
keyName := data.SerialNumber
// if device does not exist in SmartDataMap, initialize it
if _, ok := sm.SmartDataMap[keyName]; !ok {
sm.SmartDataMap[keyName] = &smart.SmartData{}
}
// update SmartData
smartData := sm.SmartDataMap[keyName]
smartData.ModelName = data.ModelName
smartData.SerialNumber = data.SerialNumber
smartData.FirmwareVersion = data.FirmwareVersion
smartData.Capacity = data.UserCapacity.Bytes
smartData.Temperature = data.NVMeSmartHealthInformationLog.Temperature
smartData.SmartStatus = getSmartStatus(smartData.Temperature, data.SmartStatus.Passed)
smartData.DiskName = data.Device.Name
smartData.DiskType = data.Device.Type
// nvme attributes does not follow the same format as ata attributes,
// so we manually map each field to SmartAttributes
log := data.NVMeSmartHealthInformationLog
smartData.Attributes = []*smart.SmartAttribute{
{Name: "CriticalWarning", RawValue: uint64(log.CriticalWarning)},
{Name: "Temperature", RawValue: uint64(log.Temperature)},
{Name: "AvailableSpare", RawValue: uint64(log.AvailableSpare)},
{Name: "AvailableSpareThreshold", RawValue: uint64(log.AvailableSpareThreshold)},
{Name: "PercentageUsed", RawValue: uint64(log.PercentageUsed)},
{Name: "DataUnitsRead", RawValue: log.DataUnitsRead},
{Name: "DataUnitsWritten", RawValue: log.DataUnitsWritten},
{Name: "HostReads", RawValue: uint64(log.HostReads)},
{Name: "HostWrites", RawValue: uint64(log.HostWrites)},
{Name: "ControllerBusyTime", RawValue: uint64(log.ControllerBusyTime)},
{Name: "PowerCycles", RawValue: uint64(log.PowerCycles)},
{Name: "PowerOnHours", RawValue: uint64(log.PowerOnHours)},
{Name: "UnsafeShutdowns", RawValue: uint64(log.UnsafeShutdowns)},
{Name: "MediaErrors", RawValue: uint64(log.MediaErrors)},
{Name: "NumErrLogEntries", RawValue: uint64(log.NumErrLogEntries)},
{Name: "WarningTempTime", RawValue: uint64(log.WarningTempTime)},
{Name: "CriticalCompTime", RawValue: uint64(log.CriticalCompTime)},
}
sm.SmartDataMap[keyName] = smartData
return true, data.Smartctl.ExitStatus
}
// detectSmartctl checks if smartctl is installed, returns an error if not
func (sm *SmartManager) detectSmartctl() error {
if _, err := exec.LookPath("smartctl"); err == nil {
slog.Debug("smartctl found")
return nil
}
slog.Debug("smartctl not found")
return errors.New("smartctl not found")
}
// NewSmartManager creates and initializes a new SmartManager
func NewSmartManager() (*SmartManager, error) {
sm := &SmartManager{
SmartDataMap: make(map[string]*smart.SmartData),
}
if err := sm.detectSmartctl(); err != nil {
return nil, err
}
return sm, nil
}