mirror of
https://github.com/dgtlmoon/changedetection.io.git
synced 2025-12-21 23:45:52 +00:00
Include edit hook save
This commit is contained in:
205
changedetectionio/processors/image_ssim_diff/edit_hook.py
Normal file
205
changedetectionio/processors/image_ssim_diff/edit_hook.py
Normal file
@@ -0,0 +1,205 @@
|
||||
"""
|
||||
Optional hook called when processor settings are saved in edit page.
|
||||
|
||||
This hook analyzes the selected region to determine if template matching
|
||||
should be enabled for tracking content movement.
|
||||
"""
|
||||
|
||||
import io
|
||||
import os
|
||||
from loguru import logger
|
||||
from changedetectionio import strtobool
|
||||
from . import CROPPED_IMAGE_TEMPLATE_FILENAME
|
||||
|
||||
|
||||
def on_config_save(watch, processor_config, datastore):
|
||||
"""
|
||||
Called after processor config is saved in edit page.
|
||||
|
||||
Analyzes the bounding box region to determine if it has enough
|
||||
visual features (texture/edges) to enable template matching for
|
||||
tracking content movement when page layout shifts.
|
||||
|
||||
Args:
|
||||
watch: Watch object
|
||||
processor_config: Dict of processor-specific config
|
||||
datastore: Datastore object
|
||||
|
||||
Returns:
|
||||
dict: Updated processor_config with auto_track_region setting
|
||||
"""
|
||||
# Check if template matching is globally enabled via ENV var
|
||||
template_matching_enabled = strtobool(os.getenv('ENABLE_TEMPLATE_TRACKING', 'True'))
|
||||
|
||||
if not template_matching_enabled:
|
||||
logger.debug("Template tracking disabled via ENABLE_TEMPLATE_TRACKING env var")
|
||||
processor_config['auto_track_region'] = False
|
||||
return processor_config
|
||||
|
||||
bounding_box = processor_config.get('bounding_box')
|
||||
|
||||
if not bounding_box:
|
||||
# No bounding box, disable tracking
|
||||
processor_config['auto_track_region'] = False
|
||||
logger.debug("No bounding box set, disabled auto-tracking")
|
||||
return processor_config
|
||||
|
||||
try:
|
||||
# Get the latest screenshot from watch history
|
||||
history_keys = list(watch.history.keys())
|
||||
if len(history_keys) == 0:
|
||||
logger.warning("No screenshot history available yet, cannot analyze for tracking")
|
||||
processor_config['auto_track_region'] = False
|
||||
return processor_config
|
||||
|
||||
# Get latest screenshot
|
||||
latest_timestamp = history_keys[-1]
|
||||
screenshot_bytes = watch.get_history_snapshot(timestamp=latest_timestamp)
|
||||
|
||||
if not screenshot_bytes:
|
||||
logger.warning("Could not load screenshot for analysis")
|
||||
processor_config['auto_track_region'] = False
|
||||
return processor_config
|
||||
|
||||
# Parse bounding box
|
||||
parts = [int(p.strip()) for p in bounding_box.split(',')]
|
||||
if len(parts) != 4:
|
||||
logger.warning("Invalid bounding box format")
|
||||
processor_config['auto_track_region'] = False
|
||||
return processor_config
|
||||
|
||||
x, y, width, height = parts
|
||||
|
||||
# Analyze the region for features/texture
|
||||
has_enough_features = analyze_region_features(screenshot_bytes, x, y, width, height)
|
||||
|
||||
if has_enough_features:
|
||||
logger.info(f"Region has sufficient features for tracking - enabling auto_track_region")
|
||||
processor_config['auto_track_region'] = True
|
||||
|
||||
# Save the template as cropped.jpg in watch data directory
|
||||
save_template_to_file(watch, screenshot_bytes, x, y, width, height)
|
||||
|
||||
else:
|
||||
logger.info(f"Region lacks distinctive features - disabling auto_track_region")
|
||||
processor_config['auto_track_region'] = False
|
||||
|
||||
# Remove old template file if exists
|
||||
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
|
||||
if os.path.exists(template_path):
|
||||
os.remove(template_path)
|
||||
logger.debug(f"Removed old template file: {template_path}")
|
||||
|
||||
return processor_config
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error analyzing region for tracking: {e}")
|
||||
processor_config['auto_track_region'] = False
|
||||
return processor_config
|
||||
|
||||
|
||||
def analyze_region_features(screenshot_bytes, x, y, width, height):
|
||||
"""
|
||||
Analyze if a region has enough visual features for template matching.
|
||||
|
||||
Uses OpenCV to detect corners/edges. If the region has distinctive
|
||||
features, template matching can reliably track it when it moves.
|
||||
|
||||
Args:
|
||||
screenshot_bytes: Full screenshot as bytes
|
||||
x, y, width, height: Bounding box coordinates
|
||||
|
||||
Returns:
|
||||
bool: True if region has enough features, False otherwise
|
||||
"""
|
||||
try:
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
# Load screenshot
|
||||
img = Image.open(io.BytesIO(screenshot_bytes))
|
||||
|
||||
# Crop to region
|
||||
region = img.crop((x, y, x + width, y + height))
|
||||
|
||||
# Convert to numpy array for OpenCV
|
||||
region_array = np.array(region)
|
||||
|
||||
# Convert to grayscale
|
||||
if len(region_array.shape) == 3:
|
||||
gray = cv2.cvtColor(region_array, cv2.COLOR_RGB2GRAY)
|
||||
else:
|
||||
gray = region_array
|
||||
|
||||
# Detect features using multiple methods for robust detection
|
||||
|
||||
# 1. Corner detection (good for UI elements, buttons, text)
|
||||
corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
|
||||
corner_count = len(corners) if corners is not None else 0
|
||||
|
||||
# 2. Edge detection (good for boundaries, shapes)
|
||||
edges = cv2.Canny(gray, 50, 150)
|
||||
edge_density = np.count_nonzero(edges) / edges.size
|
||||
|
||||
# 3. Texture variance (good for textured regions)
|
||||
variance = np.var(gray)
|
||||
|
||||
# Decision thresholds (tuned for typical web content)
|
||||
has_corners = corner_count >= 20 # At least 20 distinctive corners
|
||||
has_edges = edge_density >= 0.05 # At least 5% edge pixels
|
||||
has_texture = variance >= 100 # Some variance in pixel values
|
||||
|
||||
logger.debug(f"Region analysis: corners={corner_count}, edge_density={edge_density:.2%}, "
|
||||
f"variance={variance:.1f}")
|
||||
|
||||
# Need at least 2 out of 3 indicators
|
||||
feature_score = sum([has_corners, has_edges, has_texture])
|
||||
|
||||
if feature_score >= 2:
|
||||
logger.info(f"✓ Region has enough features for tracking (score: {feature_score}/3)")
|
||||
return True
|
||||
else:
|
||||
logger.info(f"✗ Region lacks features for tracking (score: {feature_score}/3)")
|
||||
return False
|
||||
|
||||
except ImportError:
|
||||
logger.error("OpenCV not available, cannot analyze region features")
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.error(f"Error in feature analysis: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def save_template_to_file(watch, screenshot_bytes, x, y, width, height):
|
||||
"""
|
||||
Extract the template region and save as cropped_image_template.png in watch data directory.
|
||||
|
||||
Args:
|
||||
watch: Watch object
|
||||
screenshot_bytes: Full screenshot as bytes
|
||||
x, y, width, height: Bounding box coordinates
|
||||
"""
|
||||
try:
|
||||
import os
|
||||
from PIL import Image
|
||||
|
||||
# Ensure watch data directory exists
|
||||
watch.ensure_data_dir_exists()
|
||||
|
||||
# Load and crop
|
||||
img = Image.open(io.BytesIO(screenshot_bytes))
|
||||
template = img.crop((x, y, x + width, y + height))
|
||||
|
||||
# Save as PNG (lossless, no compression artifacts that could affect template matching)
|
||||
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
|
||||
template.save(template_path, format='PNG', optimize=True)
|
||||
|
||||
logger.info(f"Saved template to {template_path}: {width}x{height}px")
|
||||
|
||||
# Close images
|
||||
template.close()
|
||||
img.close()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving template: {e}")
|
||||
Reference in New Issue
Block a user