""" Optional hook called when processor settings are saved in edit page. This hook analyzes the selected region to determine if template matching should be enabled for tracking content movement. Template matching is controlled via ENABLE_TEMPLATE_TRACKING env var (default: False). """ import io import os from loguru import logger from changedetectionio import strtobool from . import CROPPED_IMAGE_TEMPLATE_FILENAME # Template matching controlled via environment variable (default: disabled) # Set ENABLE_TEMPLATE_TRACKING=True to enable TEMPLATE_MATCHING_ENABLED = strtobool(os.getenv('ENABLE_TEMPLATE_TRACKING', 'False')) IMPORT_ERROR = "Template matching disabled (set ENABLE_TEMPLATE_TRACKING=True to enable)" def on_config_save(watch, processor_config, datastore): """ Called after processor config is saved in edit page. Analyzes the bounding box region to determine if it has enough visual features (texture/edges) to enable template matching for tracking content movement when page layout shifts. Args: watch: Watch object processor_config: Dict of processor-specific config datastore: Datastore object Returns: dict: Updated processor_config with auto_track_region setting """ # Check if template matching is globally enabled via ENV var if not TEMPLATE_MATCHING_ENABLED: logger.debug("Template tracking disabled via ENABLE_TEMPLATE_TRACKING env var") processor_config['auto_track_region'] = False return processor_config bounding_box = processor_config.get('bounding_box') if not bounding_box: # No bounding box, disable tracking processor_config['auto_track_region'] = False logger.debug("No bounding box set, disabled auto-tracking") return processor_config try: # Get the latest screenshot from watch history history_keys = list(watch.history.keys()) if len(history_keys) == 0: logger.warning("No screenshot history available yet, cannot analyze for tracking") processor_config['auto_track_region'] = False return processor_config # Get latest screenshot latest_timestamp = history_keys[-1] screenshot_bytes = watch.get_history_snapshot(timestamp=latest_timestamp) if not screenshot_bytes: logger.warning("Could not load screenshot for analysis") processor_config['auto_track_region'] = False return processor_config # Parse bounding box parts = [int(p.strip()) for p in bounding_box.split(',')] if len(parts) != 4: logger.warning("Invalid bounding box format") processor_config['auto_track_region'] = False return processor_config x, y, width, height = parts # Analyze the region for features/texture has_enough_features = analyze_region_features(screenshot_bytes, x, y, width, height) if has_enough_features: logger.info(f"Region has sufficient features for tracking - enabling auto_track_region") processor_config['auto_track_region'] = True # Save the template as cropped.jpg in watch data directory save_template_to_file(watch, screenshot_bytes, x, y, width, height) else: logger.info(f"Region lacks distinctive features - disabling auto_track_region") processor_config['auto_track_region'] = False # Remove old template file if exists template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME) if os.path.exists(template_path): os.remove(template_path) logger.debug(f"Removed old template file: {template_path}") return processor_config except Exception as e: logger.error(f"Error analyzing region for tracking: {e}") processor_config['auto_track_region'] = False return processor_config def analyze_region_features(screenshot_bytes, x, y, width, height): """ Analyze if a region has enough visual features for template matching. Uses OpenCV to detect corners/edges. If the region has distinctive features, template matching can reliably track it when it moves. Args: screenshot_bytes: Full screenshot as bytes x, y, width, height: Bounding box coordinates Returns: bool: True if region has enough features, False otherwise """ # Template matching disabled - would need OpenCV implementation for region analysis if not TEMPLATE_MATCHING_ENABLED: logger.warning(f"Cannot analyze region features: {IMPORT_ERROR}") return False # Note: Original implementation used LibVIPS handler to crop region, then OpenCV # for feature detection (goodFeaturesToTrack, Canny edge detection, variance). # If re-implementing, use OpenCV directly for both cropping and analysis. # Feature detection would use: cv2.goodFeaturesToTrack, cv2.Canny, np.var return False def save_template_to_file(watch, screenshot_bytes, x, y, width, height): """ Extract the template region and save as cropped_image_template.png in watch data directory. This is a convenience wrapper around handler.save_template() that handles watch directory setup and path construction. Args: watch: Watch object screenshot_bytes: Full screenshot as bytes x, y, width, height: Bounding box coordinates """ # Template matching disabled - would need OpenCV implementation for template saving if not TEMPLATE_MATCHING_ENABLED: logger.warning(f"Cannot save template: {IMPORT_ERROR}") return # Note: Original implementation used LibVIPS handler to crop and save region. # If re-implementing, use OpenCV (cv2.imdecode, crop with array slicing, cv2.imwrite). return