Files
changedetection.io/changedetectionio/processors/image_ssim_diff/processor.py

601 lines
26 KiB
Python

"""
Core fast screenshot comparison processor.
This processor uses OpenCV or pixelmatch algorithms to detect visual changes
in screenshots. Both methods are dramatically faster than SSIM (10-100x speedup)
while still being effective at detecting meaningful changes.
"""
import hashlib
import os
import time
from loguru import logger
from changedetectionio import strtobool
from changedetectionio.processors import difference_detection_processor, SCREENSHOT_FORMAT_PNG
from changedetectionio.processors.exceptions import ProcessorException
from . import DEFAULT_COMPARISON_METHOD, DEFAULT_COMPARISON_THRESHOLD_OPENCV, DEFAULT_COMPARISON_THRESHOLD_PIXELMATCH, CROPPED_IMAGE_TEMPLATE_FILENAME
name = 'Visual/Image screenshot change detection'
description = 'Compares screenshots using fast algorithms (OpenCV or pixelmatch), 10-100x faster than SSIM'
processor_weight = 2
list_badge_text = "Visual"
class perform_site_check(difference_detection_processor):
"""Fast screenshot comparison processor."""
# Override to use PNG format for better image comparison (JPEG compression creates noise)
screenshot_format = SCREENSHOT_FORMAT_PNG
def run_changedetection(self, watch):
"""
Perform screenshot comparison using OpenCV or pixelmatch.
Returns:
tuple: (changed_detected, update_obj, screenshot_bytes)
"""
now = time.time()
# Get the current screenshot
if not self.fetcher.screenshot:
raise ProcessorException(
message="No screenshot available. Ensure the watch is configured to use a real browser.",
url=watch.get('url')
)
self.screenshot = self.fetcher.screenshot
self.xpath_data = self.fetcher.xpath_data
# Quick MD5 check - skip expensive comparison if images are identical
from changedetectionio.content_fetchers.exceptions import checksumFromPreviousCheckWasTheSame
current_md5 = hashlib.md5(self.screenshot).hexdigest()
previous_md5 = watch.get('previous_md5')
if previous_md5 and current_md5 == previous_md5:
logger.debug(f"Screenshot MD5 unchanged ({current_md5}), skipping comparison")
raise checksumFromPreviousCheckWasTheSame()
from PIL import Image
import io
# Use hardcoded comparison method (can be overridden via COMPARISON_METHOD env var)
comparison_method = DEFAULT_COMPARISON_METHOD
# Get threshold (per-watch > global > env default)
threshold = watch.get('comparison_threshold')
if not threshold or threshold == '':
default_threshold = (
DEFAULT_COMPARISON_THRESHOLD_OPENCV if comparison_method == 'opencv'
else DEFAULT_COMPARISON_THRESHOLD_PIXELMATCH
)
threshold = self.datastore.data['settings']['application'].get('comparison_threshold', default_threshold)
# Convert string to appropriate type
try:
threshold = float(threshold)
# For pixelmatch, convert from 0-100 scale to 0-1 scale
if comparison_method == 'pixelmatch':
threshold = threshold / 100.0
except (ValueError, TypeError):
logger.warning(f"Invalid threshold value '{threshold}', using default")
threshold = 30.0 if comparison_method == 'opencv' else 0.1
# Convert current screenshot to PIL Image
try:
current_img = Image.open(io.BytesIO(self.screenshot))
except Exception as e:
raise ProcessorException(
message=f"Failed to load current screenshot: {e}",
url=watch.get('url')
)
# Check if bounding box is set (for drawn area mode)
# Read from processor-specific config JSON file (named after processor)
crop_region = None
# Automatically use the processor name from watch config as filename
processor_name = watch.get('processor', 'default')
config_filename = f'{processor_name}.json'
processor_config = self.get_extra_watch_config(config_filename) if self.get_extra_watch_config(config_filename) else {}
bounding_box = processor_config.get('bounding_box') if processor_config else None
# Template matching for tracking content movement
template_matching_enabled = processor_config.get('auto_track_region', False)
if bounding_box:
try:
# Parse bounding box: "x,y,width,height"
parts = [int(p.strip()) for p in bounding_box.split(',')]
if len(parts) == 4:
x, y, width, height = parts
# PIL crop uses (left, top, right, bottom)
crop_region = (
max(0, x),
max(0, y),
min(current_img.width, x + width),
min(current_img.height, y + height)
)
logger.info(f"Bounding box enabled: cropping to region {crop_region} (x={x}, y={y}, w={width}, h={height})")
else:
logger.warning(f"Invalid bounding box format: {bounding_box} (expected 4 values)")
except Exception as e:
logger.warning(f"Failed to parse bounding box '{bounding_box}': {e}")
# If no bounding box, check if visual selector (include_filters) is set for region-based comparison
if not crop_region:
include_filters = watch.get('include_filters', [])
if include_filters and len(include_filters) > 0:
# Get the first filter to use for cropping
first_filter = include_filters[0].strip()
if first_filter and self.xpath_data:
try:
import json
# xpath_data is JSON string from browser
xpath_data_obj = json.loads(self.xpath_data) if isinstance(self.xpath_data, str) else self.xpath_data
# Find the bounding box for the first filter
for element in xpath_data_obj.get('size_pos', []):
# Match the filter with the element's xpath
if element.get('xpath') == first_filter and element.get('highlight_as_custom_filter'):
# Found the element - extract crop coordinates
left = element.get('left', 0)
top = element.get('top', 0)
width = element.get('width', 0)
height = element.get('height', 0)
# PIL crop uses (left, top, right, bottom)
crop_region = (
max(0, left),
max(0, top),
min(current_img.width, left + width),
min(current_img.height, top + height)
)
logger.info(f"Visual selector enabled: cropping to region {crop_region} for filter: {first_filter}")
break
except Exception as e:
logger.warning(f"Failed to parse xpath_data for visual selector: {e}")
# Crop the current image if region was found (for comparison only, keep full screenshot for history)
cropped_current_img = None
original_crop_region = crop_region # Store original for template matching
if crop_region:
try:
cropped_current_img = current_img.crop(crop_region)
logger.debug(f"Cropped screenshot to {cropped_current_img.size} (region: {crop_region}) for comparison")
except Exception as e:
logger.error(f"Failed to crop screenshot: {e}")
crop_region = None # Disable cropping on error
# Check if this is the first check (no previous history)
history_keys = list(watch.history.keys())
if len(history_keys) == 0:
# First check - save baseline, no comparison
logger.info(f"First check for watch {watch.get('uuid')} - saving baseline screenshot")
# Close the PIL images before returning
current_img.close()
del current_img
if cropped_current_img:
cropped_current_img.close()
del cropped_current_img
update_obj = {
'previous_md5': hashlib.md5(self.screenshot).hexdigest(),
'last_error': False
}
logger.trace(f"Processed in {time.time() - now:.3f}s")
return False, update_obj, self.screenshot
# Get previous screenshot from history
try:
previous_timestamp = history_keys[-1]
previous_screenshot_bytes = watch.get_history_snapshot(timestamp=previous_timestamp)
# Screenshots are stored as PNG, so this should be bytes
if isinstance(previous_screenshot_bytes, str):
# If it's a string (shouldn't be for screenshots, but handle it)
previous_screenshot_bytes = previous_screenshot_bytes.encode('utf-8')
previous_img = Image.open(io.BytesIO(previous_screenshot_bytes))
# Template matching: If enabled, search for content that may have moved
# Check if feature is globally enabled via ENV var
feature_enabled = strtobool(os.getenv('ENABLE_TEMPLATE_TRACKING', 'True'))
# Check if auto-tracking is enabled for this specific watch (determined by feature analysis)
auto_track_enabled = template_matching_enabled
if feature_enabled and auto_track_enabled and original_crop_region:
try:
# Check if template exists, if not regenerate from previous snapshot
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
if not os.path.isfile(template_path):
logger.info("Template file missing, regenerating from previous snapshot")
self._regenerate_template_from_snapshot(
previous_img, watch, original_crop_region
)
logger.debug("Template matching enabled - searching for region movement")
new_crop_region = self._find_region_with_template_matching(
current_img, watch, original_crop_region, search_tolerance=0.2
)
if new_crop_region:
old_region = original_crop_region
crop_region = new_crop_region
logger.info(f"Template matching: Region moved from {old_region} to {new_crop_region}")
# Update cropped image with new region
if cropped_current_img:
cropped_current_img.close()
cropped_current_img = current_img.crop(crop_region)
else:
logger.warning("Template matching: Could not find region, using original position")
except Exception as e:
logger.warning(f"Template matching error (continuing with original position): {e}")
# Crop previous image to the same region if cropping is enabled
cropped_previous_img = None
if crop_region:
try:
cropped_previous_img = previous_img.crop(crop_region)
logger.debug(f"Cropped previous screenshot to {cropped_previous_img.size}")
except Exception as e:
logger.warning(f"Failed to crop previous screenshot: {e}")
except Exception as e:
logger.warning(f"Failed to load previous screenshot for comparison: {e}")
# Clean up current images before returning
if 'current_img' in locals():
current_img.close()
del current_img
if 'cropped_current_img' in locals() and cropped_current_img:
cropped_current_img.close()
del cropped_current_img
# If we can't load previous, treat as first check
update_obj = {
'previous_md5': hashlib.md5(self.screenshot).hexdigest(),
'last_error': False
}
logger.trace(f"Processed in {time.time() - now:.3f}s")
return False, update_obj, self.screenshot
# Perform comparison based on selected method
try:
# Use cropped versions if available, otherwise use full images
img_for_comparison_prev = cropped_previous_img if cropped_previous_img else previous_img
img_for_comparison_curr = cropped_current_img if cropped_current_img else current_img
# Ensure images are the same size
if img_for_comparison_curr.size != img_for_comparison_prev.size:
logger.info(f"Resizing images to match: {img_for_comparison_prev.size} -> {img_for_comparison_curr.size}")
img_for_comparison_prev = img_for_comparison_prev.resize(img_for_comparison_curr.size, Image.Resampling.LANCZOS)
# If we resized a cropped version, update the reference
if cropped_previous_img:
cropped_previous_img = img_for_comparison_prev
if comparison_method == 'pixelmatch':
changed_detected, change_score = self._compare_pixelmatch(
img_for_comparison_prev, img_for_comparison_curr, threshold
)
logger.info(f"Pixelmatch: {change_score:.2f}% pixels different, threshold: {threshold*100:.0f}%")
else: # opencv (default)
changed_detected, change_score = self._compare_opencv(
img_for_comparison_prev, img_for_comparison_curr, threshold
)
logger.info(f"OpenCV: {change_score:.2f}% pixels changed, threshold: {threshold:.0f}")
# Explicitly close PIL images to free memory immediately
current_img.close()
previous_img.close()
del current_img
del previous_img
if cropped_current_img:
cropped_current_img.close()
del cropped_current_img
if cropped_previous_img:
cropped_previous_img.close()
del cropped_previous_img
del previous_screenshot_bytes # Release the large bytes object
except Exception as e:
logger.error(f"Failed to compare screenshots: {e}")
# Ensure cleanup even on error
for obj in ['current_img', 'previous_img', 'cropped_current_img', 'cropped_previous_img']:
try:
locals()[obj].close()
except (KeyError, NameError, AttributeError):
pass
logger.trace(f"Processed in {time.time() - now:.3f}s")
raise ProcessorException(
message=f"Screenshot comparison failed: {e}",
url=watch.get('url')
)
# Return results
update_obj = {
'previous_md5': hashlib.md5(self.screenshot).hexdigest(),
'last_error': False
}
if changed_detected:
logger.info(f"Change detected using {comparison_method}! Score: {change_score:.2f}")
else:
logger.debug(f"No significant change using {comparison_method}. Score: {change_score:.2f}")
logger.trace(f"Processed in {time.time() - now:.3f}s")
return changed_detected, update_obj, self.screenshot
def _compare_opencv(self, img_from, img_to, threshold):
"""
Compare images using OpenCV cv2.absdiff method.
This is the fastest method (50-100x faster than SSIM) and works well
for detecting pixel-level changes with optional Gaussian blur to reduce
sensitivity to minor rendering differences.
Args:
img_from: Previous PIL Image
img_to: Current PIL Image
threshold: Pixel difference threshold (0-255)
Returns:
tuple: (changed_detected, change_percentage)
"""
import cv2
import numpy as np
# Convert PIL images to numpy arrays
arr_from = np.array(img_from)
arr_to = np.array(img_to)
# Convert to grayscale for faster comparison
if len(arr_from.shape) == 3:
gray_from = cv2.cvtColor(arr_from, cv2.COLOR_RGB2GRAY)
gray_to = cv2.cvtColor(arr_to, cv2.COLOR_RGB2GRAY)
else:
gray_from = arr_from
gray_to = arr_to
# Optional: Apply Gaussian blur to reduce sensitivity to minor rendering differences
# Controlled by environment variable, default sigma=0.8
blur_sigma = float(os.getenv("OPENCV_BLUR_SIGMA", "0.8"))
if blur_sigma > 0:
gray_from = cv2.GaussianBlur(gray_from, (0, 0), blur_sigma)
gray_to = cv2.GaussianBlur(gray_to, (0, 0), blur_sigma)
# Calculate absolute difference
diff = cv2.absdiff(gray_from, gray_to)
# Apply threshold to create binary mask
_, thresh = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)
# Count changed pixels
changed_pixels = np.count_nonzero(thresh)
total_pixels = thresh.size
change_percentage = (changed_pixels / total_pixels) * 100
# Determine if change detected (if more than 0.1% of pixels changed)
# This prevents triggering on single-pixel noise
min_change_percentage = float(os.getenv("OPENCV_MIN_CHANGE_PERCENT", "0.1"))
changed_detected = change_percentage > min_change_percentage
# Explicit memory cleanup - mark large arrays for garbage collection
del arr_from, arr_to
del gray_from, gray_to
del diff, thresh
return changed_detected, change_percentage
def _compare_pixelmatch(self, img_from, img_to, threshold):
"""
Compare images using pixelmatch (C++17 implementation via pybind11).
This method is 10-20x faster than SSIM and is specifically designed for
screenshot comparison with anti-aliasing detection. It's particularly good
at ignoring minor rendering differences while catching real changes.
Args:
img_from: Previous PIL Image
img_to: Current PIL Image
threshold: Color difference threshold (0-1, where 0 is most sensitive)
Returns:
tuple: (changed_detected, change_percentage)
"""
try:
from pybind11_pixelmatch import pixelmatch, Options
except ImportError:
logger.error("pybind11-pixelmatch not installed, falling back to OpenCV")
return self._compare_opencv(img_from, img_to, threshold * 255)
import numpy as np
# Convert to RGB if not already
if img_from.mode != 'RGB':
img_from = img_from.convert('RGB')
if img_to.mode != 'RGB':
img_to = img_to.convert('RGB')
# Convert to numpy arrays (pixelmatch expects RGBA format)
arr_from = np.array(img_from)
arr_to = np.array(img_to)
# Add alpha channel (pixelmatch expects RGBA)
if arr_from.shape[2] == 3:
alpha = np.ones((arr_from.shape[0], arr_from.shape[1], 1), dtype=np.uint8) * 255
arr_from = np.concatenate([arr_from, alpha], axis=2)
arr_to = np.concatenate([arr_to, alpha], axis=2)
# Create diff output array (RGBA)
diff_array = np.zeros_like(arr_from)
# Configure pixelmatch options
opts = Options()
opts.threshold = threshold
opts.includeAA = True # Ignore anti-aliasing differences
opts.alpha = 0.1 # Opacity of diff overlay
# Run pixelmatch (returns number of mismatched pixels)
width, height = img_from.size
num_diff_pixels = pixelmatch(
arr_from,
arr_to,
output=diff_array,
options=opts
)
# Calculate change percentage
total_pixels = width * height
change_percentage = (num_diff_pixels / total_pixels) * 100
# Determine if change detected (if more than 0.1% of pixels changed)
min_change_percentage = float(os.getenv("PIXELMATCH_MIN_CHANGE_PERCENT", "0.1"))
changed_detected = change_percentage > min_change_percentage
# Explicit memory cleanup - mark large arrays for garbage collection
del arr_from, arr_to
del diff_array
if 'alpha' in locals():
del alpha
return changed_detected, change_percentage
def _regenerate_template_from_snapshot(self, snapshot_img, watch, bbox):
"""
Regenerate template file from a snapshot (typically after 'clear data').
When user clears watch data, the template file is deleted but config remains.
This extracts the region from the previous/baseline snapshot and saves it
as the template so tracking can continue.
Args:
snapshot_img: PIL Image to extract template from (usually previous_img)
watch: Watch object (to access data directory)
bbox: (left, top, right, bottom) bounding box coordinates
"""
try:
left, top, right, bottom = bbox
width = right - left
height = bottom - top
# Ensure watch data directory exists
watch.ensure_data_dir_exists()
# Crop the template region
template = snapshot_img.crop(bbox)
# Save as PNG (lossless, no compression artifacts)
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
template.save(template_path, format='PNG', optimize=True)
logger.info(f"Regenerated template: {template_path} ({width}x{height}px)")
template.close()
except Exception as e:
logger.error(f"Failed to regenerate template: {e}")
def _find_region_with_template_matching(self, current_img, watch, original_bbox, search_tolerance=0.2):
"""
Use OpenCV template matching to find where content moved on the page.
This handles cases where page layout shifts push content to different
pixel coordinates, but the visual content remains the same.
Args:
current_img: PIL Image of current screenshot
watch: Watch object (to access template file)
original_bbox: (left, top, right, bottom) tuple of original region
search_tolerance: How far to search (0.2 = ±20% of region size)
Returns:
tuple: New (left, top, right, bottom) region, or None if not found
"""
import cv2
import numpy as np
try:
# Load template from watch data directory
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
if not os.path.isfile(template_path):
logger.warning(f"Template file not found: {template_path}")
return None
from PIL import Image
template_img = Image.open(template_path)
# Convert images to numpy arrays for OpenCV
current_array = np.array(current_img)
template_array = np.array(template_img)
# Convert to grayscale for matching
if len(current_array.shape) == 3:
current_gray = cv2.cvtColor(current_array, cv2.COLOR_RGB2GRAY)
else:
current_gray = current_array
if len(template_array.shape) == 3:
template_gray = cv2.cvtColor(template_array, cv2.COLOR_RGB2GRAY)
else:
template_gray = template_array
# Calculate search region
left, top, right, bottom = original_bbox
width = right - left
height = bottom - top
margin_x = int(width * search_tolerance)
margin_y = int(height * search_tolerance)
# Expand search area
search_left = max(0, left - margin_x)
search_top = max(0, top - margin_y)
search_right = min(current_img.width, right + margin_x)
search_bottom = min(current_img.height, bottom + margin_y)
# Extract search region
search_region = current_gray[search_top:search_bottom, search_left:search_right]
logger.debug(f"Searching for template in region: ({search_left}, {search_top}) to ({search_right}, {search_bottom})")
# Perform template matching
result = cv2.matchTemplate(search_region, template_gray, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
logger.debug(f"Template matching confidence: {max_val:.2%}")
# Check if match is good enough (80% confidence threshold)
if max_val >= 0.8:
# Calculate new bounding box in original image coordinates
match_x = search_left + max_loc[0]
match_y = search_top + max_loc[1]
new_bbox = (match_x, match_y, match_x + width, match_y + height)
# Calculate movement distance
move_x = abs(match_x - left)
move_y = abs(match_y - top)
logger.info(f"Template found at ({match_x}, {match_y}), "
f"moved {move_x}px horizontally, {move_y}px vertically, "
f"confidence: {max_val:.2%}")
# Close template image
template_img.close()
return new_bbox
else:
logger.warning(f"Template match confidence too low: {max_val:.2%} (need 80%)")
template_img.close()
return None
except Exception as e:
logger.error(f"Template matching error: {e}")
return None