Puppeteer/playwright - Stop elements from resizing on capture screenshot and xpath element mapping which could lead to incorrect xpath/element-selection info

This commit is contained in:
dgtlmoon
2025-12-18 17:37:12 +01:00
parent 377955eedb
commit ddeba6e4cc
9 changed files with 392 additions and 8 deletions

View File

@@ -10,9 +10,10 @@ import hashlib
import os
import time
from loguru import logger
from changedetectionio import strtobool
from changedetectionio.processors import difference_detection_processor, SCREENSHOT_FORMAT_PNG
from changedetectionio.processors.exceptions import ProcessorException
from . import DEFAULT_COMPARISON_METHOD, DEFAULT_COMPARISON_THRESHOLD_OPENCV, DEFAULT_COMPARISON_THRESHOLD_PIXELMATCH
from . import DEFAULT_COMPARISON_METHOD, DEFAULT_COMPARISON_THRESHOLD_OPENCV, DEFAULT_COMPARISON_THRESHOLD_PIXELMATCH, CROPPED_IMAGE_TEMPLATE_FILENAME
name = 'Visual/Image screenshot change detection'
description = 'Compares screenshots using fast algorithms (OpenCV or pixelmatch), 10-100x faster than SSIM'
@@ -90,9 +91,12 @@ class perform_site_check(difference_detection_processor):
# Automatically use the processor name from watch config as filename
processor_name = watch.get('processor', 'default')
config_filename = f'{processor_name}.json'
processor_config = self.get_extra_watch_config(config_filename)
processor_config = self.get_extra_watch_config(config_filename) if self.get_extra_watch_config(config_filename) else {}
bounding_box = processor_config.get('bounding_box') if processor_config else None
# Template matching for tracking content movement
template_matching_enabled = processor_config.get('auto_track_region', False)
if bounding_box:
try:
# Parse bounding box: "x,y,width,height"
@@ -154,6 +158,8 @@ class perform_site_check(difference_detection_processor):
# Crop the current image if region was found (for comparison only, keep full screenshot for history)
cropped_current_img = None
original_crop_region = crop_region # Store original for template matching
if crop_region:
try:
cropped_current_img = current_img.crop(crop_region)
@@ -194,6 +200,42 @@ class perform_site_check(difference_detection_processor):
previous_img = Image.open(io.BytesIO(previous_screenshot_bytes))
# Template matching: If enabled, search for content that may have moved
# Check if feature is globally enabled via ENV var
feature_enabled = strtobool(os.getenv('ENABLE_TEMPLATE_TRACKING', 'True'))
# Check if auto-tracking is enabled for this specific watch (determined by feature analysis)
auto_track_enabled = template_matching_enabled
if feature_enabled and auto_track_enabled and original_crop_region:
try:
# Check if template exists, if not regenerate from previous snapshot
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
if not os.path.isfile(template_path):
logger.info("Template file missing, regenerating from previous snapshot")
self._regenerate_template_from_snapshot(
previous_img, watch, original_crop_region
)
logger.debug("Template matching enabled - searching for region movement")
new_crop_region = self._find_region_with_template_matching(
current_img, watch, original_crop_region, search_tolerance=0.2
)
if new_crop_region:
old_region = original_crop_region
crop_region = new_crop_region
logger.info(f"Template matching: Region moved from {old_region} to {new_crop_region}")
# Update cropped image with new region
if cropped_current_img:
cropped_current_img.close()
cropped_current_img = current_img.crop(crop_region)
else:
logger.warning("Template matching: Could not find region, using original position")
except Exception as e:
logger.warning(f"Template matching error (continuing with original position): {e}")
# Crop previous image to the same region if cropping is enabled
cropped_previous_img = None
if crop_region:
@@ -423,3 +465,136 @@ class perform_site_check(difference_detection_processor):
del alpha
return changed_detected, change_percentage
def _regenerate_template_from_snapshot(self, snapshot_img, watch, bbox):
"""
Regenerate template file from a snapshot (typically after 'clear data').
When user clears watch data, the template file is deleted but config remains.
This extracts the region from the previous/baseline snapshot and saves it
as the template so tracking can continue.
Args:
snapshot_img: PIL Image to extract template from (usually previous_img)
watch: Watch object (to access data directory)
bbox: (left, top, right, bottom) bounding box coordinates
"""
try:
left, top, right, bottom = bbox
width = right - left
height = bottom - top
# Ensure watch data directory exists
watch.ensure_data_dir_exists()
# Crop the template region
template = snapshot_img.crop(bbox)
# Save as PNG (lossless, no compression artifacts)
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
template.save(template_path, format='PNG', optimize=True)
logger.info(f"Regenerated template: {template_path} ({width}x{height}px)")
template.close()
except Exception as e:
logger.error(f"Failed to regenerate template: {e}")
def _find_region_with_template_matching(self, current_img, watch, original_bbox, search_tolerance=0.2):
"""
Use OpenCV template matching to find where content moved on the page.
This handles cases where page layout shifts push content to different
pixel coordinates, but the visual content remains the same.
Args:
current_img: PIL Image of current screenshot
watch: Watch object (to access template file)
original_bbox: (left, top, right, bottom) tuple of original region
search_tolerance: How far to search (0.2 = ±20% of region size)
Returns:
tuple: New (left, top, right, bottom) region, or None if not found
"""
import cv2
import numpy as np
try:
# Load template from watch data directory
template_path = os.path.join(watch.watch_data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
if not os.path.isfile(template_path):
logger.warning(f"Template file not found: {template_path}")
return None
from PIL import Image
template_img = Image.open(template_path)
# Convert images to numpy arrays for OpenCV
current_array = np.array(current_img)
template_array = np.array(template_img)
# Convert to grayscale for matching
if len(current_array.shape) == 3:
current_gray = cv2.cvtColor(current_array, cv2.COLOR_RGB2GRAY)
else:
current_gray = current_array
if len(template_array.shape) == 3:
template_gray = cv2.cvtColor(template_array, cv2.COLOR_RGB2GRAY)
else:
template_gray = template_array
# Calculate search region
left, top, right, bottom = original_bbox
width = right - left
height = bottom - top
margin_x = int(width * search_tolerance)
margin_y = int(height * search_tolerance)
# Expand search area
search_left = max(0, left - margin_x)
search_top = max(0, top - margin_y)
search_right = min(current_img.width, right + margin_x)
search_bottom = min(current_img.height, bottom + margin_y)
# Extract search region
search_region = current_gray[search_top:search_bottom, search_left:search_right]
logger.debug(f"Searching for template in region: ({search_left}, {search_top}) to ({search_right}, {search_bottom})")
# Perform template matching
result = cv2.matchTemplate(search_region, template_gray, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
logger.debug(f"Template matching confidence: {max_val:.2%}")
# Check if match is good enough (80% confidence threshold)
if max_val >= 0.8:
# Calculate new bounding box in original image coordinates
match_x = search_left + max_loc[0]
match_y = search_top + max_loc[1]
new_bbox = (match_x, match_y, match_x + width, match_y + height)
# Calculate movement distance
move_x = abs(match_x - left)
move_y = abs(match_y - top)
logger.info(f"Template found at ({match_x}, {match_y}), "
f"moved {move_x}px horizontally, {move_y}px vertically, "
f"confidence: {max_val:.2%}")
# Close template image
template_img.close()
return new_bbox
else:
logger.warning(f"Template match confidence too low: {max_val:.2%} (need 80%)")
template_img.close()
return None
except Exception as e:
logger.error(f"Template matching error: {e}")
return None