Compare commits

...

2 Commits

Author SHA1 Message Date
dgtlmoon
1d281baace Avoid reprocessing if the page was the same 2026-02-12 15:56:36 +01:00
dgtlmoon
4bc01aca8d Price tracker - Use a more memory efficient price scraper, use subprocess on linux for cleaner memory management. (#3864)
Some checks are pending
Build and push containers / metadata (push) Waiting to run
Build and push containers / build-push-containers (push) Waiting to run
Publish Python 🐍distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Waiting to run
Publish Python 🐍distribution 📦 to PyPI and TestPyPI / Test the built package works basically. (push) Blocked by required conditions
Publish Python 🐍distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Blocked by required conditions
ChangeDetection.io Container Build Test / Build linux/amd64 (alpine) (push) Waiting to run
ChangeDetection.io Container Build Test / Build linux/arm64 (alpine) (push) Waiting to run
ChangeDetection.io Container Build Test / Build linux/amd64 (main) (push) Waiting to run
ChangeDetection.io Container Build Test / Build linux/arm/v7 (main) (push) Waiting to run
ChangeDetection.io Container Build Test / Build linux/arm/v8 (main) (push) Waiting to run
ChangeDetection.io Container Build Test / Build linux/arm64 (main) (push) Waiting to run
ChangeDetection.io App Test / lint-code (push) Waiting to run
ChangeDetection.io App Test / test-application-3-10 (push) Blocked by required conditions
ChangeDetection.io App Test / test-application-3-11 (push) Blocked by required conditions
ChangeDetection.io App Test / test-application-3-12 (push) Blocked by required conditions
ChangeDetection.io App Test / test-application-3-13 (push) Blocked by required conditions
2026-02-11 17:21:08 +01:00
7 changed files with 567 additions and 7 deletions

View File

@@ -190,7 +190,7 @@ def get_plugin_processor_metadata():
logger.warning(f"Error getting plugin processor metadata: {e}")
return metadata
@lru_cache(maxsize=1)
def available_processors():
"""
Get a list of processors by name and description for the UI elements.

View File

@@ -257,8 +257,16 @@ class difference_detection_processor():
except IOError as e:
logger.error(f"Failed to write extra watch config {filename}: {e}")
def get_raw_document_checksum(self):
checksum = None
if self.fetcher.content:
checksum = hashlib.md5(self.fetcher.content.encode('utf-8')).hexdigest()
return checksum
@abstractmethod
def run_changedetection(self, watch):
def run_changedetection(self, watch, force_reprocess=False):
update_obj = {'last_notification_error': False, 'last_error': False}
some_data = 'xxxxx'
update_obj["previous_md5"] = hashlib.md5(some_data.encode('utf-8')).hexdigest()

View File

@@ -30,7 +30,7 @@ class perform_site_check(difference_detection_processor):
# Override to use PNG format for better image comparison (JPEG compression creates noise)
screenshot_format = SCREENSHOT_FORMAT_PNG
def run_changedetection(self, watch):
def run_changedetection(self, watch, force_reprocess=False):
"""
Perform screenshot comparison using OpenCV subprocess handler.

View File

@@ -2,6 +2,7 @@ from ..base import difference_detection_processor
from ..exceptions import ProcessorException
from . import Restock
from loguru import logger
from changedetectionio.content_fetchers.exceptions import checksumFromPreviousCheckWasTheSame
import urllib3
import time
@@ -56,6 +57,259 @@ def _deduplicate_prices(data):
return list(unique_data)
# =============================================================================
# MEMORY MANAGEMENT: Why We Use Multiprocessing (Linux Only)
# =============================================================================
#
# The get_itemprop_availability() function uses 'extruct' to parse HTML metadata
# (JSON-LD, microdata, OpenGraph, etc). Extruct internally uses lxml, which wraps
# libxml2 - a C library that allocates memory at the C level.
#
# Memory Leak Problem:
# --------------------
# 1. lxml's document_fromstring() creates thousands of Python objects backed by
# C-level allocations (nodes, attributes, text content)
# 2. Python's garbage collector can mark these objects as collectible, but
# cannot force the OS to reclaim the actual C-level memory
# 3. malloc/free typically doesn't return memory to OS - it just marks it as
# "free in the process address space"
# 4. With repeated parsing of large HTML (5MB+ pages), memory accumulates even
# after Python GC runs
#
# Why Multiprocessing Fixes This:
# --------------------------------
# When a subprocess exits, the OS forcibly reclaims ALL memory including C-level
# allocations that Python GC couldn't release. This ensures clean memory state
# after each extraction.
#
# Performance Impact:
# -------------------
# - Memray analysis showed 1.2M document_fromstring allocations per page
# - Without subprocess: memory grows by ~50-500MB per parse and lingers
# - With subprocess: ~35MB overhead but forces full cleanup after each run
# - Trade-off: 35MB resource_tracker vs 500MB+ accumulated leak = much better at scale
#
# References:
# -----------
# - lxml memory issues: https://medium.com/devopss-hole/python-lxml-memory-leak-b8d0b1000dc7
# - libxml2 caching behavior: https://www.mail-archive.com/lxml@python.org/msg00026.html
# - GC limitations with C extensions: https://benbernardblog.com/tracking-down-a-freaky-python-memory-leak-part-2/
#
# Additional Context:
# -------------------
# - jsonpath_ng (used to query the parsed data) is pure Python and doesn't leak
# - The leak is specifically from lxml's document parsing, not the JSONPath queries
# - Linux-only because multiprocessing spawn is well-tested there; other platforms
# use direct call as fallback
#
# Alternative Solution (Future Optimization):
# -------------------------------------------
# This entire problem could be avoided by using regex to extract just the machine
# data blocks (JSON-LD, microdata, OpenGraph tags) BEFORE parsing with lxml:
#
# 1. Use regex to extract <script type="application/ld+json">...</script> blocks
# 2. Use regex to extract <meta property="og:*"> tags
# 3. Use regex to find itemprop/itemtype attributes and their containing elements
# 4. Parse ONLY those extracted snippets instead of the entire HTML document
#
# Benefits:
# - Avoids parsing 5MB of HTML when we only need a few KB of metadata
# - Eliminates the lxml memory leak entirely
# - Faster extraction (regex is much faster than DOM parsing)
# - No subprocess overhead needed
#
# Trade-offs:
# - Regex for HTML is brittle (comments, CDATA, edge cases)
# - Microdata extraction would be complex (need to track element boundaries)
# - Would need extensive testing to ensure we don't miss valid data
# - extruct is battle-tested; regex solution would need similar maturity
#
# For now, the subprocess approach is safer and leverages existing extruct code.
# =============================================================================
def _extract_itemprop_availability_worker(pipe_conn):
"""
Subprocess worker for itemprop extraction (Linux memory management).
Uses spawn multiprocessing to isolate extruct/lxml memory allocations.
When the subprocess exits, the OS reclaims ALL memory including lxml's
C-level allocations that Python's GC cannot release.
Args:
pipe_conn: Pipe connection to receive HTML and send result
"""
import json
import gc
html_content = None
result_data = None
try:
# Receive HTML as raw bytes (no pickle)
html_bytes = pipe_conn.recv_bytes()
html_content = html_bytes.decode('utf-8')
# Explicitly delete html_bytes to free memory
del html_bytes
gc.collect()
# Perform extraction in subprocess (uses extruct/lxml)
result_data = get_itemprop_availability(html_content)
# Convert Restock object to dict for JSON serialization
result = {
'success': True,
'data': dict(result_data) if result_data else {}
}
pipe_conn.send_bytes(json.dumps(result).encode('utf-8'))
# Clean up before exit
del result_data, html_content, result
gc.collect()
except MoreThanOnePriceFound:
# Serialize the specific exception type
result = {
'success': False,
'exception_type': 'MoreThanOnePriceFound'
}
pipe_conn.send_bytes(json.dumps(result).encode('utf-8'))
except Exception as e:
# Serialize other exceptions
result = {
'success': False,
'exception_type': type(e).__name__,
'exception_message': str(e)
}
pipe_conn.send_bytes(json.dumps(result).encode('utf-8'))
finally:
# Final cleanup before subprocess exits
# Variables may already be deleted in try block, so use try/except
try:
del html_content
except (NameError, UnboundLocalError):
pass
try:
del result_data
except (NameError, UnboundLocalError):
pass
gc.collect()
pipe_conn.close()
def extract_itemprop_availability_safe(html_content) -> Restock:
"""
Extract itemprop availability with hybrid approach for memory efficiency.
Strategy (fastest to slowest, least to most memory):
1. Try pure Python extraction (JSON-LD, OpenGraph, microdata) - covers 80%+ of cases
2. Fall back to extruct with subprocess isolation on Linux for complex cases
Args:
html_content: HTML string to parse
Returns:
Restock: Extracted availability data
Raises:
MoreThanOnePriceFound: When multiple prices detected
Other exceptions: From extruct/parsing
"""
import platform
# Step 1: Try pure Python extraction first (fast, no lxml, no memory leak)
try:
from .pure_python_extractor import extract_metadata_pure_python, query_price_availability
logger.trace("Attempting pure Python metadata extraction (no lxml)")
extracted_data = extract_metadata_pure_python(html_content)
price_data = query_price_availability(extracted_data)
# If we got price AND availability, we're done!
if price_data.get('price') and price_data.get('availability'):
result = Restock(price_data)
logger.debug(f"Pure Python extraction successful: {dict(result)}")
return result
# If we got some data but not everything, still try extruct for completeness
if price_data.get('price') or price_data.get('availability'):
logger.debug(f"Pure Python extraction partial: {price_data}, will try extruct for completeness")
except Exception as e:
logger.debug(f"Pure Python extraction failed: {e}, falling back to extruct")
# Step 2: Fall back to extruct (uses lxml, needs subprocess on Linux)
logger.trace("Falling back to extruct (lxml-based) with subprocess isolation")
# Only use subprocess isolation on Linux
# Other platforms may have issues with spawn or don't need the aggressive memory management
if platform.system() == 'Linux':
import multiprocessing
import json
import gc
try:
ctx = multiprocessing.get_context('spawn')
parent_conn, child_conn = ctx.Pipe()
p = ctx.Process(target=_extract_itemprop_availability_worker, args=(child_conn,))
p.start()
# Send HTML as raw bytes (no pickle)
html_bytes = html_content.encode('utf-8')
parent_conn.send_bytes(html_bytes)
# Explicitly delete html_bytes copy immediately after sending
del html_bytes
gc.collect()
# Receive result as JSON
result_bytes = parent_conn.recv_bytes()
result = json.loads(result_bytes.decode('utf-8'))
# Wait for subprocess to complete
p.join()
# Close pipes
parent_conn.close()
child_conn.close()
# Clean up all subprocess-related objects
del p, parent_conn, child_conn, result_bytes
gc.collect()
# Handle result or re-raise exception
if result['success']:
# Reconstruct Restock object from dict
restock_obj = Restock(result['data'])
# Clean up result dict
del result
gc.collect()
return restock_obj
else:
# Re-raise the exception that occurred in subprocess
exception_type = result['exception_type']
exception_msg = result.get('exception_message', '')
del result
gc.collect()
if exception_type == 'MoreThanOnePriceFound':
raise MoreThanOnePriceFound()
else:
raise Exception(f"{exception_type}: {exception_msg}")
except Exception as e:
# If multiprocessing itself fails, log and fall back to direct call
logger.warning(f"Subprocess extraction failed: {e}, falling back to direct call")
gc.collect()
return get_itemprop_availability(html_content)
else:
# Non-Linux: direct call (no subprocess overhead needed)
return get_itemprop_availability(html_content)
# should return Restock()
# add casting?
def get_itemprop_availability(html_content) -> Restock:
@@ -150,12 +404,16 @@ class perform_site_check(difference_detection_processor):
screenshot = None
xpath_data = None
def run_changedetection(self, watch):
def run_changedetection(self, watch, force_reprocess=False):
import hashlib
if not watch:
raise Exception("Watch no longer exists.")
current_raw_document_checksum = self.get_raw_document_checksum()
if not force_reprocess and watch.get('previous_md5_before_filters') and watch.get('previous_md5_before_filters') == current_raw_document_checksum:
raise checksumFromPreviousCheckWasTheSame()
# Unset any existing notification error
update_obj = {'last_notification_error': False, 'last_error': False, 'restock': Restock()}
@@ -165,6 +423,7 @@ class perform_site_check(difference_detection_processor):
# Track the content type
update_obj['content_type'] = self.fetcher.headers.get('Content-Type', '')
update_obj["last_check_status"] = self.fetcher.get_last_status_code()
update_obj['previous_md5_before_filters'] = current_raw_document_checksum
# Only try to process restock information (like scraping for keywords) if the page was actually rendered correctly.
# Otherwise it will assume "in stock" because nothing suggesting the opposite was found
@@ -196,8 +455,9 @@ class perform_site_check(difference_detection_processor):
multiple_prices_found = False
# Try built-in extraction first, this will scan metadata in the HTML
# On Linux, this runs in a subprocess to prevent lxml/extruct memory leaks
try:
itemprop_availability = get_itemprop_availability(self.fetcher.content)
itemprop_availability = extract_itemprop_availability_safe(self.fetcher.content)
except MoreThanOnePriceFound as e:
# Don't raise immediately - let plugins try to handle this case
# Plugins might be able to determine which price is correct

View File

@@ -0,0 +1,286 @@
"""
Pure Python metadata extractor - no lxml, no memory leaks.
This module provides a fast, memory-efficient alternative to extruct for common
e-commerce metadata extraction. It handles:
- JSON-LD (covers 80%+ of modern sites)
- OpenGraph meta tags
- Basic microdata attributes
Uses Python's built-in html.parser instead of lxml/libxml2, avoiding C-level
memory allocation issues. For edge cases, the main processor can fall back to
extruct (with subprocess isolation on Linux).
"""
from html.parser import HTMLParser
import json
import re
from loguru import logger
class JSONLDExtractor(HTMLParser):
"""
Extract JSON-LD structured data from HTML.
Finds all <script type="application/ld+json"> tags and parses their content.
Handles multiple JSON-LD blocks on the same page.
"""
def __init__(self):
super().__init__()
self.in_jsonld = False
self.data = [] # List of all parsed JSON-LD objects
self.current_script = []
def handle_starttag(self, tag, attrs):
if tag == 'script':
# Check if this is a JSON-LD script tag
for attr, value in attrs:
if attr == 'type' and value == 'application/ld+json':
self.in_jsonld = True
self.current_script = []
break
def handle_data(self, data):
if self.in_jsonld:
self.current_script.append(data)
def handle_endtag(self, tag):
if tag == 'script' and self.in_jsonld:
# Parse the accumulated script content
script_content = ''.join(self.current_script)
if script_content.strip():
try:
# Parse JSON (handles both objects and arrays)
parsed = json.loads(script_content)
if isinstance(parsed, list):
self.data.extend(parsed)
else:
self.data.append(parsed)
except json.JSONDecodeError as e:
logger.debug(f"Failed to parse JSON-LD: {e}")
pass
self.in_jsonld = False
self.current_script = []
class OpenGraphExtractor(HTMLParser):
"""
Extract OpenGraph meta tags from HTML.
Finds <meta property="og:*"> tags commonly used for social media sharing.
"""
def __init__(self):
super().__init__()
self.og_data = {}
def handle_starttag(self, tag, attrs):
if tag == 'meta':
attrs_dict = dict(attrs)
prop = attrs_dict.get('property', '')
# Extract OpenGraph properties
if prop.startswith('og:'):
content = attrs_dict.get('content', '')
if content:
self.og_data[prop] = content
class MicrodataExtractor(HTMLParser):
"""
Extract basic microdata attributes from HTML.
Finds elements with itemprop attributes. This is a simplified extractor
that doesn't handle nested itemscope/itemtype hierarchies - for complex
cases, use extruct as fallback.
"""
def __init__(self):
super().__init__()
self.microdata = {}
self.current_itemprop = None
def handle_starttag(self, tag, attrs):
attrs_dict = dict(attrs)
if 'itemprop' in attrs_dict:
itemprop = attrs_dict['itemprop']
# Price/currency/availability can be in content/href attributes
if itemprop == 'price':
if 'content' in attrs_dict:
self.microdata['price'] = attrs_dict['content']
else:
self.current_itemprop = 'price'
elif itemprop == 'priceCurrency':
if 'content' in attrs_dict:
self.microdata['currency'] = attrs_dict['content']
else:
self.current_itemprop = 'priceCurrency'
elif itemprop == 'availability':
# Can be in href (link) or content (meta)
if 'href' in attrs_dict:
self.microdata['availability'] = attrs_dict['href']
elif 'content' in attrs_dict:
self.microdata['availability'] = attrs_dict['content']
else:
self.current_itemprop = 'availability'
def handle_data(self, data):
# Capture text content for itemprop elements
if self.current_itemprop == 'price':
# Try to extract numeric price from text
try:
price_text = re.sub(r'[^\d.]', '', data.strip())
if price_text:
self.microdata['price'] = float(price_text)
except ValueError:
pass
elif self.current_itemprop == 'priceCurrency':
currency = data.strip()
if currency:
self.microdata['currency'] = currency
elif self.current_itemprop == 'availability':
availability = data.strip()
if availability:
self.microdata['availability'] = availability
def handle_endtag(self, tag):
# Reset current itemprop after closing tag
self.current_itemprop = None
def extract_metadata_pure_python(html_content):
"""
Extract structured metadata from HTML using pure Python parsers.
Returns a dict with three keys:
- 'json-ld': List of parsed JSON-LD objects
- 'opengraph': Dict of OpenGraph properties
- 'microdata': Dict of microdata properties
Args:
html_content: HTML string to parse
Returns:
dict: Extracted metadata in three formats
"""
result = {
'json-ld': [],
'opengraph': {},
'microdata': {}
}
# Extract JSON-LD
try:
jsonld_extractor = JSONLDExtractor()
jsonld_extractor.feed(html_content)
result['json-ld'] = jsonld_extractor.data
logger.trace(f"Pure Python: Found {len(jsonld_extractor.data)} JSON-LD blocks")
except Exception as e:
logger.debug(f"JSON-LD extraction failed: {e}")
# Extract OpenGraph
try:
og_extractor = OpenGraphExtractor()
og_extractor.feed(html_content)
result['opengraph'] = og_extractor.og_data
if result['opengraph']:
logger.trace(f"Pure Python: Found {len(og_extractor.og_data)} OpenGraph tags")
except Exception as e:
logger.debug(f"OpenGraph extraction failed: {e}")
# Extract Microdata
try:
microdata_extractor = MicrodataExtractor()
microdata_extractor.feed(html_content)
result['microdata'] = microdata_extractor.microdata
if result['microdata']:
logger.trace(f"Pure Python: Found microdata: {result['microdata']}")
except Exception as e:
logger.debug(f"Microdata extraction failed: {e}")
return result
def query_price_availability(extracted_data):
"""
Query extracted metadata for price and availability information.
Uses jsonpath_ng to query JSON-LD data (same approach as extruct).
Falls back to OpenGraph and microdata if JSON-LD doesn't have the data.
Args:
extracted_data: Dict from extract_metadata_pure_python()
Returns:
dict: {'price': float, 'currency': str, 'availability': str}
"""
from jsonpath_ng import parse
result = {}
# 1. Try JSON-LD first (most reliable and common)
for data in extracted_data.get('json-ld', []):
try:
# Use jsonpath to find price/availability anywhere in the structure
price_parse = parse('$..(price|Price)')
availability_parse = parse('$..(availability|Availability)')
currency_parse = parse('$..(priceCurrency|currency|priceCurrency)')
price_results = [m.value for m in price_parse.find(data)]
if price_results and not result.get('price'):
# Handle various price formats
price_val = price_results[0]
if isinstance(price_val, (int, float)):
result['price'] = float(price_val)
elif isinstance(price_val, str):
# Extract numeric value from string
try:
result['price'] = float(re.sub(r'[^\d.]', '', price_val))
except ValueError:
pass
avail_results = [m.value for m in availability_parse.find(data)]
if avail_results and not result.get('availability'):
result['availability'] = str(avail_results[0])
curr_results = [m.value for m in currency_parse.find(data)]
if curr_results and not result.get('currency'):
result['currency'] = str(curr_results[0])
# If we found price, this JSON-LD block is good
if result.get('price'):
logger.debug(f"Pure Python: Found price data in JSON-LD: {result}")
break
except Exception as e:
logger.debug(f"Error querying JSON-LD: {e}")
continue
# 2. Try OpenGraph if JSON-LD didn't provide everything
og_data = extracted_data.get('opengraph', {})
if not result.get('price') and 'og:price:amount' in og_data:
try:
result['price'] = float(og_data['og:price:amount'])
except ValueError:
pass
if not result.get('currency') and 'og:price:currency' in og_data:
result['currency'] = og_data['og:price:currency']
if not result.get('availability') and 'og:availability' in og_data:
result['availability'] = og_data['og:availability']
# 3. Use microdata as last resort
microdata = extracted_data.get('microdata', {})
if not result.get('price') and 'price' in microdata:
result['price'] = microdata['price']
if not result.get('currency') and 'currency' in microdata:
result['currency'] = microdata['currency']
if not result.get('availability') and 'availability' in microdata:
result['availability'] = microdata['availability']
return result

View File

@@ -7,6 +7,7 @@ import re
import urllib3
from changedetectionio.conditions import execute_ruleset_against_all_plugins
from changedetectionio.content_fetchers.exceptions import checksumFromPreviousCheckWasTheSame
from ..base import difference_detection_processor
from changedetectionio.html_tools import PERL_STYLE_REGEX, cdata_in_document_to_text, TRANSLATE_WHITESPACE_TABLE
from changedetectionio import html_tools, content_fetchers
@@ -368,12 +369,16 @@ class ChecksumCalculator:
# (set_proxy_from_list)
class perform_site_check(difference_detection_processor):
def run_changedetection(self, watch):
def run_changedetection(self, watch, force_reprocess=False):
changed_detected = False
if not watch:
raise Exception("Watch no longer exists.")
current_raw_document_checksum = self.get_raw_document_checksum()
if not force_reprocess and watch.get('previous_md5_before_filters') and watch.get('previous_md5_before_filters') == current_raw_document_checksum:
raise checksumFromPreviousCheckWasTheSame()
# Initialize components
filter_config = FilterConfig(watch, self.datastore)
content_processor = ContentProcessor(self.fetcher, watch, filter_config, self.datastore)
@@ -393,7 +398,7 @@ class perform_site_check(difference_detection_processor):
# Track the content type and checksum before filters
update_obj['content_type'] = ctype_header
update_obj['previous_md5_before_filters'] = hashlib.md5(self.fetcher.content.encode('utf-8')).hexdigest()
update_obj['previous_md5_before_filters'] = current_raw_document_checksum
# === CONTENT PREPROCESSING ===
# Avoid creating unnecessary intermediate string copies by reassigning only when needed

View File

@@ -276,6 +276,7 @@ async def async_update_worker(worker_id, q, notification_q, app, datastore, exec
# Yes fine, so nothing todo, don't continue to process.
process_changedetection_results = False
changed_detected = False
logger.debug(f'[{uuid}] - checksumFromPreviousCheckWasTheSame - Checksum from previous check was the same, nothing todo here.')
except content_fetchers_exceptions.BrowserConnectError as e:
datastore.update_watch(uuid=uuid,