mirror of
https://github.com/dgtlmoon/changedetection.io.git
synced 2025-11-05 00:56:06 +00:00
Compare commits
2 Commits
openai-int
...
default-fa
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b8e8cc1d20 | ||
|
|
405990be0f |
@@ -1,7 +1,7 @@
|
||||
{% extends 'base.html' %}
|
||||
|
||||
{% block content %}
|
||||
{% from '_helpers.html' import render_field, render_checkbox_field, render_simple_field, render_button, render_time_schedule_form %}
|
||||
{% from '_helpers.html' import render_field, render_checkbox_field, render_button, render_time_schedule_form %}
|
||||
{% from '_common_fields.html' import render_common_settings_form %}
|
||||
<script>
|
||||
const notification_base_url="{{url_for('ui.ui_notification.ajax_callback_send_notification_test', mode="global-settings")}}";
|
||||
@@ -23,7 +23,6 @@
|
||||
<li class="tab"><a href="#fetching">Fetching</a></li>
|
||||
<li class="tab"><a href="#filters">Global Filters</a></li>
|
||||
<li class="tab"><a href="#ui-options">UI Options</a></li>
|
||||
<li class="tab"><a href="#ai-options"><i data-feather="aperture" style="width: 14px; height: 14px; margin-right: 4px;"></i> AI</a></li>
|
||||
<li class="tab"><a href="#api">API</a></li>
|
||||
<li class="tab"><a href="#timedate">Time & Date</a></li>
|
||||
<li class="tab"><a href="#proxies">CAPTCHA & Proxies</a></li>
|
||||
@@ -263,24 +262,6 @@ nav
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class="tab-pane-inner" id="ai-options">
|
||||
<p><strong>New:</strong> click here (link to changedetection.io tutorial page) find out how to setup and example</p>
|
||||
<br>
|
||||
key fields should be some password type field so you can see its set but doesnt contain the key on view and doesnt lose it on save<br>
|
||||
|
||||
<div class="pure-control-group inline-radio">
|
||||
{{ render_simple_field(form.application.form.ai.form.LLM_backend) }}
|
||||
<span class="pure-form-message-inline">Preferred LLM connection</span>
|
||||
</div>
|
||||
<div class="pure-control-group">
|
||||
{{ render_checkbox_field(form.application.form.ai.form.API_keys.form.openai) }}
|
||||
<span class="pure-form-message-inline">Go here to read more about OpenAI integration</span>
|
||||
</div>
|
||||
<div class="pure-control-group">
|
||||
{{ render_checkbox_field(form.application.form.ai.form.API_keys.form.gemini) }}
|
||||
<span class="pure-form-message-inline">Go here to read more about Google Gemini integration</span>
|
||||
</div>
|
||||
</div>
|
||||
<div class="tab-pane-inner" id="proxies">
|
||||
<div id="recommended-proxy">
|
||||
<div>
|
||||
|
||||
@@ -25,7 +25,7 @@
|
||||
<div class="tabs collapsable">
|
||||
<ul>
|
||||
<li class="tab" id=""><a href="#general">General</a></li>
|
||||
<li class="tab"><a href="#filters-and-triggers">AI, Filters & Triggers</a></li>
|
||||
<li class="tab"><a href="#filters-and-triggers">Filters & Triggers</a></li>
|
||||
{% if extra_tab_content %}
|
||||
<li class="tab"><a href="#extras_tab">{{ extra_tab_content }}</a></li>
|
||||
{% endif %}
|
||||
|
||||
@@ -312,27 +312,8 @@ def construct_blueprint(datastore: ChangeDetectionStore, update_q, queuedWatchMe
|
||||
'''For when viewing the "preview" of the rendered text from inside of Edit'''
|
||||
from flask import jsonify
|
||||
from changedetectionio.processors.text_json_diff import prepare_filter_prevew
|
||||
|
||||
watch = datastore.data["watching"].get(uuid)
|
||||
|
||||
if not watch:
|
||||
return jsonify({
|
||||
"error": "Watch not found",
|
||||
"code": 400
|
||||
}), 400
|
||||
|
||||
if not watch.history_n:
|
||||
return jsonify({
|
||||
"error": "Watch has empty history, at least one fetch of the page is required.",
|
||||
"code": 400
|
||||
}), 400
|
||||
#
|
||||
try:
|
||||
result = prepare_filter_prevew(watch_uuid=uuid, form_data=request.form, datastore=datastore)
|
||||
return jsonify(result)
|
||||
except Exception as e:
|
||||
return abort(500, str(e))
|
||||
|
||||
result = prepare_filter_prevew(watch_uuid=uuid, form_data=request.form, datastore=datastore)
|
||||
return jsonify(result)
|
||||
|
||||
@edit_blueprint.route("/highlight_submit_ignore_url", methods=['POST'])
|
||||
@login_optionally_required
|
||||
|
||||
@@ -212,14 +212,7 @@ def construct_blueprint(datastore: ChangeDetectionStore, update_q, queuedWatchMe
|
||||
|
||||
add_paused = request.form.get('edit_and_watch_submit_button') != None
|
||||
processor = request.form.get('processor', 'text_json_diff')
|
||||
extras = {'paused': add_paused, 'processor': processor}
|
||||
|
||||
LLM_prompt = request.form.get('LLM_prompt', '').strip()
|
||||
if LLM_prompt:
|
||||
extras['LLM_prompt'] = LLM_prompt
|
||||
extras['LLM_send_type'] = request.form.get('LLM_send_type', 'text')
|
||||
|
||||
new_uuid = datastore.add_watch(url=url, tag=request.form.get('tags').strip(), extras=extras)
|
||||
new_uuid = datastore.add_watch(url=url, tag=request.form.get('tags').strip(), extras={'paused': add_paused, 'processor': processor})
|
||||
|
||||
if new_uuid:
|
||||
if add_paused:
|
||||
|
||||
@@ -5,7 +5,12 @@
|
||||
<script src="{{url_for('static_content', group='js', filename='watch-overview.js')}}" defer></script>
|
||||
<script>let nowtimeserver={{ now_time_server }};</script>
|
||||
<script>let favicon_baseURL="{{ url_for('static_content', group='favicon', filename="PLACEHOLDER")}}";</script>
|
||||
|
||||
<script>
|
||||
// Initialize Feather icons after the page loads
|
||||
document.addEventListener('DOMContentLoaded', function() {
|
||||
feather.replace();
|
||||
});
|
||||
</script>
|
||||
<style>
|
||||
.checking-now .last-checked {
|
||||
background-image: linear-gradient(to bottom, transparent 0%, rgba(0,0,0,0.05) 40%, rgba(0,0,0,0.1) 100%);
|
||||
@@ -26,12 +31,8 @@
|
||||
{{ render_nolabel_field(form.edit_and_watch_submit_button, title="Edit first then Watch") }}
|
||||
</div>
|
||||
<div id="watch-group-tag">
|
||||
<i data-feather="tag" style="width: 14px; height: 14px; stroke: white; margin-right: 4px;"></i>
|
||||
{{ render_field(form.tags, value=active_tag.title if active_tag_uuid else '', placeholder="Watch group / tag", class="transparent-field") }}
|
||||
</div>
|
||||
|
||||
{%- include 'edit/llm_prompt.html' -%}
|
||||
|
||||
<div id="quick-watch-processor-type">
|
||||
{{ render_simple_field(form.processor) }}
|
||||
</div>
|
||||
|
||||
@@ -55,18 +55,6 @@ valid_method = {
|
||||
default_method = 'GET'
|
||||
allow_simplehost = not strtobool(os.getenv('BLOCK_SIMPLEHOSTS', 'False'))
|
||||
|
||||
LLM_example_texts = ['Tell me simply "Price, In stock"',
|
||||
'Give me a list of all products for sale in this text',
|
||||
'Tell me simply "Yes" "No" or "Maybe" if you think the weather outlook is good for a 4-day small camping trip',
|
||||
'Look at this restaurant menu and only give me list of meals you think are good for type 2 diabetics, if nothing is found just say "nothing"',
|
||||
]
|
||||
|
||||
LLM_send_type_choices = [('text', 'Plain text after filters'),
|
||||
('above_fold_text', 'Text above the fold'),
|
||||
('Screenshot', 'Screenshot / Selection'),
|
||||
('HTML', 'HTML Source')
|
||||
]
|
||||
|
||||
class StringListField(StringField):
|
||||
widget = widgets.TextArea()
|
||||
|
||||
@@ -527,15 +515,11 @@ class ValidateCSSJSONXPATHInput(object):
|
||||
|
||||
class quickWatchForm(Form):
|
||||
from . import processors
|
||||
import random
|
||||
|
||||
url = fields.URLField('URL', validators=[validateURL()])
|
||||
tags = StringTagUUID('Group tag', [validators.Optional()])
|
||||
watch_submit_button = SubmitField('Watch', render_kw={"class": "pure-button pure-button-primary"})
|
||||
processor = RadioField(u'Processor', choices=processors.available_processors(), default="text_json_diff")
|
||||
LLM_prompt = TextAreaField(u'AI Prompt', [validators.Optional()], render_kw={"placeholder": f'Example, "{random.choice(LLM_example_texts)}"'})
|
||||
LLM_send_type = RadioField(u'LLM Send', choices=LLM_send_type_choices, default="text")
|
||||
|
||||
edit_and_watch_submit_button = SubmitField('Edit > Watch', render_kw={"class": "pure-button pure-button-primary"})
|
||||
|
||||
|
||||
@@ -543,7 +527,6 @@ class quickWatchForm(Form):
|
||||
# Common to a single watch and the global settings
|
||||
class commonSettingsForm(Form):
|
||||
from . import processors
|
||||
import random
|
||||
|
||||
def __init__(self, formdata=None, obj=None, prefix="", data=None, meta=None, **kwargs):
|
||||
super().__init__(formdata, obj, prefix, data, meta, **kwargs)
|
||||
@@ -561,8 +544,6 @@ class commonSettingsForm(Form):
|
||||
timezone = StringField("Timezone for watch schedule", render_kw={"list": "timezones"}, validators=[validateTimeZoneName()])
|
||||
webdriver_delay = IntegerField('Wait seconds before extracting text', validators=[validators.Optional(), validators.NumberRange(min=1, message="Should contain one or more seconds")])
|
||||
|
||||
LLM_prompt = TextAreaField(u'AI Prompt', [validators.Optional()], render_kw={"placeholder": f'Example, "{random.choice(LLM_example_texts)}"'})
|
||||
LLM_send_type = RadioField(u'LLM Send', choices=LLM_send_type_choices, default="text")
|
||||
|
||||
class importForm(Form):
|
||||
from . import processors
|
||||
@@ -761,29 +742,6 @@ class globalSettingsApplicationUIForm(Form):
|
||||
socket_io_enabled = BooleanField('Realtime UI Updates Enabled', default=True, validators=[validators.Optional()])
|
||||
favicons_enabled = BooleanField('Favicons Enabled', default=True, validators=[validators.Optional()])
|
||||
|
||||
class globalSettingsApplicationAIKeysForm(Form):
|
||||
|
||||
openai = StringField('OpenAI Key',
|
||||
validators=[validators.Optional()],
|
||||
render_kw={"placeholder": 'xxxxxxxxx'}
|
||||
)
|
||||
gemini = StringField('Google Gemini Key',
|
||||
validators=[validators.Optional()],
|
||||
render_kw={"placeholder": 'ooooooooo'}
|
||||
)
|
||||
|
||||
class globalSettingsApplicationAIForm(Form):
|
||||
|
||||
#@todo use only configured types?
|
||||
LLM_backend = RadioField(u'LLM Backend',
|
||||
choices=[('openai', 'Open AI'), ('gemini', 'Gemini')],
|
||||
default="text")
|
||||
|
||||
# So that we can pass this to our LLM/__init__.py as a keys dict
|
||||
API_keys = FormField(globalSettingsApplicationAIKeysForm)
|
||||
|
||||
|
||||
|
||||
# datastore.data['settings']['application']..
|
||||
class globalSettingsApplicationForm(commonSettingsForm):
|
||||
|
||||
@@ -816,8 +774,6 @@ class globalSettingsApplicationForm(commonSettingsForm):
|
||||
message="Should contain zero or more attempts")])
|
||||
ui = FormField(globalSettingsApplicationUIForm)
|
||||
|
||||
ai = FormField(globalSettingsApplicationAIForm)
|
||||
|
||||
|
||||
class globalSettingsForm(Form):
|
||||
# Define these as FormFields/"sub forms", this way it matches the JSON storage
|
||||
|
||||
@@ -65,10 +65,6 @@ class model(dict):
|
||||
'socket_io_enabled': True,
|
||||
'favicons_enabled': True
|
||||
},
|
||||
'ai': {
|
||||
'openai_key': None,
|
||||
'gemini_key': None
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -38,9 +38,6 @@ class watch_base(dict):
|
||||
'last_error': False,
|
||||
'last_notification_error': None,
|
||||
'last_viewed': 0, # history key value of the last viewed via the [diff] link
|
||||
'LLM_prompt': None,
|
||||
'LLM_send_type': None,
|
||||
'LLM_backend': None,
|
||||
'method': 'GET',
|
||||
'notification_alert_count': 0,
|
||||
'notification_body': None,
|
||||
|
||||
@@ -1,64 +0,0 @@
|
||||
import importlib
|
||||
from langchain_core.messages import SystemMessage, HumanMessage
|
||||
|
||||
SYSTEM_MESSAGE = (
|
||||
"You are a text analyser who will attempt to give the most concise information "
|
||||
"to the request, the information should be returned in a way that if I ask you again "
|
||||
"I should get the same answer if the outcome is the same. The goal is to cut down "
|
||||
"or reduce the text changes from you when i ask the same question about similar content "
|
||||
"Always list items in exactly the same order and wording as found in the source text. "
|
||||
)
|
||||
|
||||
|
||||
class LLM_integrate:
|
||||
PROVIDER_MAP = {
|
||||
"openai": ("langchain_openai", "ChatOpenAI"),
|
||||
"azure": ("langchain_community.chat_models", "AzureChatOpenAI"),
|
||||
"gemini": ("langchain_google_genai", "ChatGoogleGenerativeAI")
|
||||
}
|
||||
|
||||
def __init__(self, api_keys: dict):
|
||||
"""
|
||||
api_keys = {
|
||||
"openai": "sk-xxx",
|
||||
"azure": "AZURE_KEY",
|
||||
"gemini": "GEMINI_KEY"
|
||||
}
|
||||
"""
|
||||
self.api_keys = api_keys
|
||||
|
||||
def run(self, provider: str, model: str, message: str):
|
||||
module_name, class_name = self.PROVIDER_MAP[provider]
|
||||
|
||||
# Import the class dynamically
|
||||
module = importlib.import_module(module_name)
|
||||
LLMClass = getattr(module, class_name)
|
||||
|
||||
# Create the LLM object
|
||||
llm_kwargs = {}
|
||||
if provider == "openai":
|
||||
llm_kwargs = dict(api_key=self.api_keys.get("openai", ''),
|
||||
model=model,
|
||||
# https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.temperature
|
||||
temperature=0 # most deterministic,
|
||||
)
|
||||
elif provider == "azure":
|
||||
llm_kwargs = dict(
|
||||
api_key=self.api_keys["azure"],
|
||||
azure_endpoint="https://<your-endpoint>.openai.azure.com",
|
||||
deployment_name=model
|
||||
)
|
||||
elif provider == "gemini":
|
||||
llm_kwargs = dict(api_key=self.api_keys.get("gemini"), model=model)
|
||||
|
||||
llm = LLMClass(**llm_kwargs)
|
||||
|
||||
# Build your messages
|
||||
messages = [
|
||||
SystemMessage(content=SYSTEM_MESSAGE),
|
||||
HumanMessage(content=message)
|
||||
]
|
||||
|
||||
# Run the model asynchronously
|
||||
result = llm.invoke(messages)
|
||||
return result.content
|
||||
@@ -1,6 +1,5 @@
|
||||
from abc import abstractmethod
|
||||
from changedetectionio.content_fetchers.base import Fetcher
|
||||
from changedetectionio.processors.LLM import LLM_integrate
|
||||
from changedetectionio.strtobool import strtobool
|
||||
from copy import deepcopy
|
||||
from loguru import logger
|
||||
|
||||
@@ -7,7 +7,7 @@ import re
|
||||
import urllib3
|
||||
|
||||
from changedetectionio.conditions import execute_ruleset_against_all_plugins
|
||||
from changedetectionio.processors import difference_detection_processor, LLM_integrate
|
||||
from changedetectionio.processors import difference_detection_processor
|
||||
from changedetectionio.html_tools import PERL_STYLE_REGEX, cdata_in_document_to_text, TRANSLATE_WHITESPACE_TABLE
|
||||
from changedetectionio import html_tools, content_fetchers
|
||||
from changedetectionio.blueprint.price_data_follower import PRICE_DATA_TRACK_ACCEPT, PRICE_DATA_TRACK_REJECT
|
||||
@@ -293,30 +293,6 @@ class perform_site_check(difference_detection_processor):
|
||||
# we end up with 'Some text\n\n', sorting will add all those extra \n at the start, so we remove them here.
|
||||
stripped_text_from_html = stripped_text_from_html.replace("\n\n", "\n")
|
||||
stripped_text_from_html = '\n'.join(sorted(stripped_text_from_html.splitlines(), key=lambda x: x.lower()))
|
||||
### OPENAI?
|
||||
|
||||
|
||||
# And here we run LLM integration based on the content we received
|
||||
LLM_keys = self.datastore.data['settings']['application']['ai'].get('API_keys', {})
|
||||
if watch.get('LLM_prompt') and stripped_text_from_html and LLM_keys:
|
||||
response = ""
|
||||
try:
|
||||
integrator = LLM_integrate(api_keys=LLM_keys)
|
||||
response = integrator.run(
|
||||
provider="openai",
|
||||
model="gpt-4.1", #gpt-4-turbo
|
||||
message=f"{watch.get('LLM_prompt')}\n----------- Content follows-----------\n\n{stripped_text_from_html}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.critical(f"Error running LLM integration {str(e)} (type etc)")
|
||||
raise(e)
|
||||
x = 1
|
||||
# todo is there something special when tokens are used up etc?
|
||||
else:
|
||||
stripped_text_from_html = response
|
||||
# logger.trace("LLM done")
|
||||
finally:
|
||||
logger.debug("LLM request done (type etc)")
|
||||
|
||||
### CALCULATE MD5
|
||||
# If there's text to ignore
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 15 KiB |
@@ -21,7 +21,6 @@ function request_textpreview_update() {
|
||||
namespace: 'watchEdit'
|
||||
}).done(function (data) {
|
||||
console.debug(data['duration'])
|
||||
$('#error-text').text(data['duration']);
|
||||
$('#filters-and-triggers #text-preview-before-inner').text(data['before_filter']);
|
||||
$('#filters-and-triggers #text-preview-inner')
|
||||
.text(data['after_filter'])
|
||||
@@ -38,8 +37,9 @@ function request_textpreview_update() {
|
||||
}).fail(function (error) {
|
||||
if (error.statusText === 'abort') {
|
||||
console.log('Request was aborted due to a new request being fired.');
|
||||
} else {
|
||||
$('#filters-and-triggers #text-preview-inner').text('There was an error communicating with the server.');
|
||||
}
|
||||
$('#error-text').text(error.responseJSON['error']);
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
@use "_llm-prompt";
|
||||
|
||||
ul#conditions_match_logic {
|
||||
list-style: none;
|
||||
input, label, li {
|
||||
|
||||
@@ -1,59 +0,0 @@
|
||||
#form-quick-watch-add #openai-prompt {
|
||||
color: var(--color-white);
|
||||
}
|
||||
|
||||
|
||||
#llm-prompt-all {
|
||||
.label {
|
||||
display: block !important;
|
||||
}
|
||||
|
||||
textarea {
|
||||
white-space: pre-wrap;
|
||||
overflow-wrap: break-word;
|
||||
word-wrap: break-word; /* legacy support */
|
||||
font-size: 13px;
|
||||
}
|
||||
ul {
|
||||
list-style: none;
|
||||
padding-left: 0px;
|
||||
|
||||
li {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
gap: 0.5em;
|
||||
padding-bottom: 0.3em;
|
||||
|
||||
> * {
|
||||
margin: 0px;
|
||||
padding: 0px;
|
||||
}
|
||||
|
||||
label {
|
||||
font-weight: normal;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@media (min-width: 768px) {
|
||||
#llm-prompt-all {
|
||||
display: grid;
|
||||
grid-template-columns: 1fr auto auto;
|
||||
column-gap: 1.5rem;
|
||||
align-items: start;
|
||||
|
||||
font-size: 0.9rem;
|
||||
padding: 0.3rem;
|
||||
|
||||
#llm-prompt {
|
||||
/* ensure the textarea stretches horizontally */
|
||||
width: 100%;
|
||||
|
||||
textarea {
|
||||
width: 100%;
|
||||
box-sizing: border-box;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -792,9 +792,7 @@ textarea::placeholder {
|
||||
border-top-left-radius: 5px;
|
||||
border-top-right-radius: 5px;
|
||||
background-color: var(--color-background-tab);
|
||||
svg {
|
||||
stroke: var(--color-text-tab);
|
||||
}
|
||||
|
||||
&:not(.active) {
|
||||
&:hover {
|
||||
background-color: var(--color-background-tab-hover);
|
||||
@@ -804,13 +802,11 @@ textarea::placeholder {
|
||||
&.active,
|
||||
:target {
|
||||
background-color: var(--color-background);
|
||||
|
||||
a {
|
||||
color: var(--color-text-tab-active);
|
||||
font-weight: bold;
|
||||
}
|
||||
svg {
|
||||
stroke: var(--color-text-tab-active);
|
||||
}
|
||||
}
|
||||
|
||||
a {
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -38,12 +38,6 @@
|
||||
<script src="{{url_for('static_content', group='js', filename='socket.io.min.js')}}"></script>
|
||||
<script src="{{url_for('static_content', group='js', filename='realtime.js')}}" defer></script>
|
||||
{% endif %}
|
||||
<script>
|
||||
// Initialize Feather icons after the page loads
|
||||
document.addEventListener('DOMContentLoaded', function() {
|
||||
feather.replace();
|
||||
});
|
||||
</script>
|
||||
</head>
|
||||
|
||||
<body class="">
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{% extends 'base.html' %}
|
||||
{% block content %}
|
||||
{% from '_helpers.html' import render_field, render_simple_field, render_checkbox_field, render_button, render_time_schedule_form, playwright_warning, only_playwright_type_watches_warning, render_conditions_fieldlist_of_formfields_as_table %}
|
||||
{% from '_helpers.html' import render_field, render_checkbox_field, render_button, render_time_schedule_form, playwright_warning, only_playwright_type_watches_warning, render_conditions_fieldlist_of_formfields_as_table %}
|
||||
{% from '_common_fields.html' import render_common_settings_form %}
|
||||
<script src="{{url_for('static_content', group='js', filename='tabs.js')}}" defer></script>
|
||||
<script src="{{url_for('static_content', group='js', filename='vis.js')}}" defer></script>
|
||||
@@ -52,7 +52,7 @@
|
||||
<!-- should goto extra forms? -->
|
||||
{% if watch['processor'] == 'text_json_diff' %}
|
||||
<li class="tab"><a id="visualselector-tab" href="#visualselector">Visual Filter Selector</a></li>
|
||||
<li class="tab" id="filters-and-triggers-tab"><a href="#filters-and-triggers">AI, Filters & Triggers</a></li>
|
||||
<li class="tab" id="filters-and-triggers-tab"><a href="#filters-and-triggers">Filters & Triggers</a></li>
|
||||
<li class="tab" id="conditions-tab"><a href="#conditions">Conditions</a></li>
|
||||
{% endif %}
|
||||
<li class="tab"><a href="#notifications">Notifications</a></li>
|
||||
@@ -316,6 +316,7 @@ Math: {{ 1 + 1 }}") }}
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
{% include "edit/include_subtract.html" %}
|
||||
<div class="text-filtering border-fieldset">
|
||||
<fieldset class="pure-group" id="text-filtering-type-options">
|
||||
@@ -363,7 +364,6 @@ Math: {{ 1 + 1 }}") }}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<p id="error-text"></p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
@@ -1,7 +1,4 @@
|
||||
<div class="pure-control-group">
|
||||
{%- include 'edit/llm_prompt.html' -%}
|
||||
</div>
|
||||
<div class="pure-control-group">
|
||||
<div class="pure-control-group">
|
||||
{% set field = render_field(form.include_filters,
|
||||
rows=5,
|
||||
placeholder=has_tag_filters_extra+"#example
|
||||
|
||||
@@ -1,12 +0,0 @@
|
||||
<div class="pure-control-group" id="ai-filter-options">
|
||||
<div id="openai-prompt">
|
||||
<div id="llm-prompt-all">
|
||||
<div id="llm-prompt">
|
||||
{{ render_simple_field(form.LLM_prompt, rows=5) }}
|
||||
</div>
|
||||
<div id="llm-send-type">
|
||||
{{ render_simple_field(form.LLM_send_type) }}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
@@ -69,9 +69,6 @@ werkzeug==3.0.6
|
||||
# Templating, so far just in the URLs but in the future can be for the notifications also
|
||||
jinja2~=3.1
|
||||
jinja2-time
|
||||
langchain~=0.3
|
||||
langchain-openai~=0.3
|
||||
|
||||
openpyxl
|
||||
# https://peps.python.org/pep-0508/#environment-markers
|
||||
# https://github.com/dgtlmoon/changedetection.io/pull/1009
|
||||
|
||||
Reference in New Issue
Block a user